Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+60x+15\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+60xz^2+15z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+77733x+466614\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2, 11)$ | $2.1871346879170462586727720108$ | $\infty$ |
$(-1/4, 1/8)$ | $0$ | $2$ |
Integral points
\( \left(2, 11\right) \), \( \left(2, -13\right) \)
Invariants
Conductor: | $N$ | = | \( 465 \) | = | $3 \cdot 5 \cdot 31$ |
|
Discriminant: | $\Delta$ | = | $-13852815$ | = | $-1 \cdot 3 \cdot 5 \cdot 31^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{23862997439}{13852815} \) | = | $3^{-1} \cdot 5^{-1} \cdot 31^{-4} \cdot 2879^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.059784125244183102236171709077$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.059784125244183102236171709077$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0014273197623869$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8904997306103866$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1871346879170462586727720108$ |
|
Real period: | $\Omega$ | ≈ | $1.3420007844678423073751204305$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.4675682334607527725192008449 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.467568233 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.342001 \cdot 2.187135 \cdot 2}{2^2} \\ & \approx 1.467568233\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 128 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$31$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 3714 & 3715 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1801 & 8 \\ 3484 & 33 \end{array}\right),\left(\begin{array}{rr} 3713 & 8 \\ 3712 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1496 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 1403 & 1396 \\ 1442 & 3261 \end{array}\right),\left(\begin{array}{rr} 3259 & 3258 \\ 2338 & 475 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2488 & 3 \\ 2485 & 2 \end{array}\right)$.
The torsion field $K:=\Q(E[3720])$ is a degree-$658243584000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 15 = 3 \cdot 5 \) |
$3$ | split multiplicative | $4$ | \( 155 = 5 \cdot 31 \) |
$5$ | split multiplicative | $6$ | \( 93 = 3 \cdot 31 \) |
$31$ | nonsplit multiplicative | $32$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 465b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.13500.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2916000000.2 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.13617871257600.10 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.102249359116875.5 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | split | split | ord | ord | ord | ord | ord | ss | ord | nonsplit | ord | ord | ord | ss |
$\lambda$-invariant(s) | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.