| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 465690.a1 |
465690a1 |
465690.a |
465690a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{2} \cdot 19^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4561920$ |
$1.714514$ |
$770842973809/66873600$ |
$0.91571$ |
$3.45080$ |
$[1, 1, 0, -68958, -6455052]$ |
\(y^2+xy=x^3+x^2-68958x-6455052\) |
2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? |
$[ ]$ |
| 465690.a2 |
465690a2 |
465690.a |
465690a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5 \cdot 19^{6} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9123840$ |
$2.061089$ |
$1009328859791/8734528080$ |
$0.96292$ |
$3.67341$ |
$[1, 1, 0, 75442, -29761212]$ |
\(y^2+xy=x^3+x^2+75442x-29761212\) |
2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? |
$[ ]$ |
| 465690.b1 |
465690b3 |
465690.b |
465690b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{11} \cdot 3^{2} \cdot 5^{8} \cdot 19^{9} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$6536$ |
$48$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$11094589440$ |
$5.601929$ |
$2695411376533589106170675619466398289/2123546400000000$ |
$1.08691$ |
$7.78094$ |
$[1, 1, 0, -10466648756828, 13033451602201390032]$ |
\(y^2+xy=x^3+x^2-10466648756828x+13033451602201390032\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 152.24.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.b2 |
465690b2 |
465690.b |
465690b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{22} \cdot 3^{4} \cdot 5^{4} \cdot 19^{12} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$6536$ |
$48$ |
$0$ |
$1$ |
$25$ |
$5$ |
$2$ |
$5547294720$ |
$5.255356$ |
$658059431397928037221595991689809/18470704385855324160000$ |
$1.07575$ |
$7.14363$ |
$[1, 1, 0, -654165551708, 203647473976759248]$ |
\(y^2+xy=x^3+x^2-654165551708x+203647473976759248\) |
2.6.0.a.1, 8.12.0.b.1, 76.12.0.?, 152.24.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.b3 |
465690b4 |
465690.b |
465690b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 19^{18} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$6536$ |
$48$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$11094589440$ |
$5.601929$ |
$-655552536799502322424300617353809/3486819805571317382996428800$ |
$1.03409$ |
$7.14404$ |
$[1, 1, 0, -653333807708, 204191157249309648]$ |
\(y^2+xy=x^3+x^2-653333807708x+204191157249309648\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |
| 465690.b4 |
465690b1 |
465690.b |
465690b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{44} \cdot 3^{8} \cdot 5^{2} \cdot 19^{9} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$6536$ |
$48$ |
$0$ |
$1$ |
$25$ |
$5$ |
$1$ |
$2773647360$ |
$4.908783$ |
$161272686097343726562556430929/851057913027019721932800$ |
$1.01673$ |
$6.50661$ |
$[1, 1, 0, -40937335388, 3173481055933392]$ |
\(y^2+xy=x^3+x^2-40937335388x+3173481055933392\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |
| 465690.c1 |
465690c1 |
465690.c |
465690c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{18} \cdot 3^{5} \cdot 5^{8} \cdot 19^{10} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1032$ |
$12$ |
$0$ |
$66.16683881$ |
$1$ |
|
$1$ |
$945561600$ |
$4.402618$ |
$2496660002148802349535638689/139440550809600000000$ |
$1.00650$ |
$6.18724$ |
$[1, 1, 0, -10202793553, 396644237892757]$ |
\(y^2+xy=x^3+x^2-10202793553x+396644237892757\) |
2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? |
$[(5415685137653086827836453233202/9722775388187, 346579808002673579978126822086871808177330013/9722775388187)]$ |
| 465690.c2 |
465690c2 |
465690.c |
465690c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{4} \cdot 19^{14} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1032$ |
$12$ |
$0$ |
$33.08341940$ |
$1$ |
|
$0$ |
$1891123200$ |
$4.749191$ |
$-2096189402176608102649238689/593373633120258765120000$ |
$1.00920$ |
$6.20436$ |
$[1, 1, 0, -9625193553, 443534614532757]$ |
\(y^2+xy=x^3+x^2-9625193553x+443534614532757\) |
2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? |
$[(-77452824380625389/956751, 22402646160178020646099082/956751)]$ |
| 465690.d1 |
465690d3 |
465690.d |
465690d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3 \cdot 5^{16} \cdot 19^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$58982400$ |
$3.135960$ |
$24400330024019218849/1495971679687500$ |
$1.05267$ |
$4.77407$ |
$[1, 1, 0, -21813793, 37069872697]$ |
\(y^2+xy=x^3+x^2-21813793x+37069872697\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 152.12.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.d2 |
465690d2 |
465690.d |
465690d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 19^{8} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$9804$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$29491200$ |
$2.789387$ |
$164106655117491169/37546256250000$ |
$0.92425$ |
$4.39083$ |
$[1, 1, 0, -4117573, -2502414467]$ |
\(y^2+xy=x^3+x^2-4117573x-2502414467\) |
2.6.0.a.1, 12.12.0.b.1, 76.12.0.?, 172.12.0.?, 228.24.0.?, $\ldots$ |
$[ ]$ |
| 465690.d3 |
465690d1 |
465690.d |
465690d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 19^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$14745600$ |
$2.442810$ |
$134949649760741089/10588320000$ |
$0.91780$ |
$4.37584$ |
$[1, 1, 0, -3857653, -2917714643]$ |
\(y^2+xy=x^3+x^2-3857653x-2917714643\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 76.12.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.d4 |
465690d4 |
465690.d |
465690d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3 \cdot 5^{4} \cdot 19^{10} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$58982400$ |
$3.135960$ |
$1964918972535908831/3341561738407500$ |
$0.94863$ |
$4.63178$ |
$[1, 1, 0, 9419927, -15490291967]$ |
\(y^2+xy=x^3+x^2+9419927x-15490291967\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.e1 |
465690e1 |
465690.e |
465690e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 19^{8} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3020544$ |
$1.661591$ |
$-689029129/116100$ |
$0.78614$ |
$3.38372$ |
$[1, 1, 0, -47298, -4518648]$ |
\(y^2+xy=x^3+x^2-47298x-4518648\) |
516.2.0.? |
$[ ]$ |
| 465690.f1 |
465690f1 |
465690.f |
465690f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{6} \cdot 3^{8} \cdot 5^{2} \cdot 19^{7} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3268$ |
$2$ |
$0$ |
$2.743101800$ |
$1$ |
|
$2$ |
$8294400$ |
$2.195541$ |
$-821314391438449/8576539200$ |
$0.88707$ |
$3.98631$ |
$[1, 1, 0, -704318, -229847628]$ |
\(y^2+xy=x^3+x^2-704318x-229847628\) |
3268.2.0.? |
$[(7028, 581306)]$ |
| 465690.g1 |
465690g3 |
465690.g |
465690g |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{12} \cdot 19^{6} \cdot 43^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$19608$ |
$96$ |
$1$ |
$7.601106891$ |
$1$ |
|
$1$ |
$52254720$ |
$3.106426$ |
$4465136636671380769/2096375976562500$ |
$1.08124$ |
$4.64395$ |
$[1, 1, 0, -12384473, 7281986577]$ |
\(y^2+xy=x^3+x^2-12384473x+7281986577\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ |
$[(-2738/3, 2838667/3)]$ |
| 465690.g2 |
465690g1 |
465690.g |
465690g |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{6} \cdot 3^{9} \cdot 5^{4} \cdot 19^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$19608$ |
$96$ |
$1$ |
$22.80332067$ |
$1$ |
|
$1$ |
$17418240$ |
$2.557121$ |
$599437478278595809/33854760000$ |
$0.99177$ |
$4.49009$ |
$[1, 1, 0, -6341333, -6148716627]$ |
\(y^2+xy=x^3+x^2-6341333x-6148716627\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ |
$[(-122969406998/9171, 712614424662289/9171)]$ |
| 465690.g3 |
465690g2 |
465690.g |
465690g |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{3} \cdot 3^{18} \cdot 5^{2} \cdot 19^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$19608$ |
$96$ |
$1$ |
$11.40166033$ |
$1$ |
|
$0$ |
$34836480$ |
$2.903694$ |
$-502780379797811809/143268096832200$ |
$0.99591$ |
$4.50729$ |
$[1, 1, 0, -5980333, -6879164027]$ |
\(y^2+xy=x^3+x^2-5980333x-6879164027\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ |
$[(19972931/58, 79143187481/58)]$ |
| 465690.g4 |
465690g4 |
465690.g |
465690g |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2 \cdot 3^{6} \cdot 5^{6} \cdot 19^{6} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$19608$ |
$96$ |
$1$ |
$3.800553445$ |
$1$ |
|
$0$ |
$104509440$ |
$3.453003$ |
$200541749524551119231/144008551960031250$ |
$1.03428$ |
$4.93547$ |
$[1, 1, 0, 44021777, 55193455327]$ |
\(y^2+xy=x^3+x^2+44021777x+55193455327\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ |
$[(204299/2, 92933701/2)]$ |
| 465690.h1 |
465690h1 |
465690.h |
465690h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{5} \cdot 19^{8} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2580$ |
$2$ |
$0$ |
$3.975536815$ |
$1$ |
|
$2$ |
$8208000$ |
$2.136585$ |
$-10134822889/58050000$ |
$0.86140$ |
$3.75314$ |
$[1, 1, 0, -115888, 50078992]$ |
\(y^2+xy=x^3+x^2-115888x+50078992\) |
2580.2.0.? |
$[(5204, 372116)]$ |
| 465690.i1 |
465690i1 |
465690.i |
465690i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{13} \cdot 3^{10} \cdot 5^{11} \cdot 19^{10} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$14.47810756$ |
$1$ |
|
$2$ |
$1956240000$ |
$4.903412$ |
$-2444182070662741739761/43672640400000000000$ |
$1.03526$ |
$6.29473$ |
$[1, 1, 0, -5136279127, -799932667858859]$ |
\(y^2+xy=x^3+x^2-5136279127x-799932667858859\) |
40.2.0.a.1 |
$[(1025066957, 32818714680584)]$ |
| 465690.j1 |
465690j1 |
465690.j |
465690j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{7} \cdot 3^{3} \cdot 5 \cdot 19^{7} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$98040$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2661120$ |
$1.526911$ |
$-1732323601/14117760$ |
$0.82170$ |
$3.19148$ |
$[1, 1, 0, -9032, -1286976]$ |
\(y^2+xy=x^3+x^2-9032x-1286976\) |
98040.2.0.? |
$[ ]$ |
| 465690.k1 |
465690k5 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 19^{7} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$196080$ |
$192$ |
$1$ |
$1.233165312$ |
$1$ |
|
$4$ |
$82575360$ |
$3.333199$ |
$157130420902139847946321/82338281250$ |
$0.97794$ |
$5.44606$ |
$[1, 1, 0, -405838012, 3146689270486]$ |
\(y^2+xy=x^3+x^2-405838012x+3146689270486\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.2, 76.12.0.?, $\ldots$ |
$[(9707, 344414)]$ |
| 465690.k2 |
465690k3 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 19^{8} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$98040$ |
$192$ |
$1$ |
$2.466330625$ |
$1$ |
|
$8$ |
$41287680$ |
$2.986626$ |
$38381916934612839601/27769211122500$ |
$0.94567$ |
$4.80878$ |
$[1, 1, 0, -25369282, 49141152064]$ |
\(y^2+xy=x^3+x^2-25369282x+49141152064\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.6, 40.24.0-4.b.1.2, 76.24.0.?, $\ldots$ |
$[(3418, 47026)]$ |
| 465690.k3 |
465690k6 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2 \cdot 3 \cdot 5^{2} \cdot 19^{7} \cdot 43^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$196080$ |
$192$ |
$1$ |
$4.932661251$ |
$4$ |
$2$ |
$2$ |
$82575360$ |
$3.333199$ |
$-19447769219685987601/33311370791162850$ |
$0.95782$ |
$4.86214$ |
$[1, 1, 0, -20225032, 69657449914]$ |
\(y^2+xy=x^3+x^2-20225032x+69657449914\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.6, 40.24.0-8.n.1.7, $\ldots$ |
$[(1613, 202256)]$ |
| 465690.k4 |
465690k4 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 19^{14} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$196080$ |
$192$ |
$1$ |
$9.865322503$ |
$1$ |
|
$2$ |
$41287680$ |
$2.986626$ |
$9417471079857004081/131452777937340$ |
$0.93951$ |
$4.70113$ |
$[1, 1, 0, -15882202, -24073087544]$ |
\(y^2+xy=x^3+x^2-15882202x-24073087544\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0-8.n.1.1, 76.12.0.?, $\ldots$ |
$[(16955, 2131871)]$ |
| 465690.k5 |
465690k2 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 19^{10} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$98040$ |
$192$ |
$1$ |
$4.932661251$ |
$1$ |
|
$6$ |
$20643840$ |
$2.640053$ |
$16418244983975281/7807218339600$ |
$0.92513$ |
$4.21444$ |
$[1, 1, 0, -1911502, 428726116]$ |
\(y^2+xy=x^3+x^2-1911502x+428726116\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.4, 40.24.0-4.b.1.3, 76.24.0.?, $\ldots$ |
$[(1432, 24394)]$ |
| 465690.k6 |
465690k1 |
465690.k |
465690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5 \cdot 19^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$196080$ |
$192$ |
$1$ |
$9.865322503$ |
$1$ |
|
$1$ |
$10321920$ |
$2.293480$ |
$184016114839439/130363395840$ |
$0.89974$ |
$3.87033$ |
$[1, 1, 0, 427778, 51166324]$ |
\(y^2+xy=x^3+x^2+427778x+51166324\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0-8.n.1.8, 48.24.0-8.n.1.1, $\ldots$ |
$[(337525/9, 197071028/9)]$ |
| 465690.l1 |
465690l1 |
465690.l |
465690l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{5} \cdot 3 \cdot 5^{3} \cdot 19^{11} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$98040$ |
$2$ |
$0$ |
$13.01702502$ |
$1$ |
|
$0$ |
$14688000$ |
$2.527218$ |
$-9356716174635361/1277667084000$ |
$0.90524$ |
$4.18759$ |
$[1, 1, 0, -1584797, -854371491]$ |
\(y^2+xy=x^3+x^2-1584797x-854371491\) |
98040.2.0.? |
$[(19110793/89, 67402351489/89)]$ |
| 465690.m1 |
465690m1 |
465690.m |
465690m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{22} \cdot 3^{2} \cdot 5^{2} \cdot 19^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3268$ |
$2$ |
$0$ |
$1.883184893$ |
$1$ |
|
$2$ |
$2168320$ |
$1.586586$ |
$-3659312181032299/40579891200$ |
$0.93112$ |
$3.42406$ |
$[1, 1, 0, -60997, -5879219]$ |
\(y^2+xy=x^3+x^2-60997x-5879219\) |
3268.2.0.? |
$[(522, 9979)]$ |
| 465690.n1 |
465690n1 |
465690.n |
465690n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{22} \cdot 3 \cdot 5^{2} \cdot 19^{8} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$9.201675680$ |
$1$ |
|
$0$ |
$32262912$ |
$2.688313$ |
$-495704787125401/13526630400$ |
$0.98493$ |
$4.40099$ |
$[1, 1, 0, -4238147, 3434741709]$ |
\(y^2+xy=x^3+x^2-4238147x+3434741709\) |
516.2.0.? |
$[(-639338/17, 224595973/17)]$ |
| 465690.o1 |
465690o2 |
465690.o |
465690o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{6} \cdot 19^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$1.149528475$ |
$1$ |
|
$6$ |
$69672960$ |
$3.024208$ |
$503835593418244309249/898614000000$ |
$1.01669$ |
$5.00606$ |
$[1, 0, 1, -59845144, 178188084326]$ |
\(y^2+xy+y=x^3-59845144x+178188084326\) |
2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? |
$[(3868, 65753)]$ |
| 465690.o2 |
465690o1 |
465690.o |
465690o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{3} \cdot 19^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$2.299056951$ |
$1$ |
|
$5$ |
$34836480$ |
$2.677635$ |
$-119305480789133569/5200091136000$ |
$0.98567$ |
$4.37196$ |
$[1, 0, 1, -3702424, 2843141222]$ |
\(y^2+xy+y=x^3-3702424x+2843141222\) |
2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? |
$[(1018, 10862)]$ |
| 465690.p1 |
465690p1 |
465690.p |
465690p |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 19^{8} \cdot 43^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$516$ |
$16$ |
$0$ |
$2.968178112$ |
$1$ |
|
$6$ |
$45702144$ |
$2.805634$ |
$-5789279907940249/21466890000$ |
$0.92195$ |
$4.58627$ |
$[1, 0, 1, -9615604, 11512499906]$ |
\(y^2+xy+y=x^3-9615604x+11512499906\) |
3.8.0-3.a.1.2, 516.16.0.? |
$[(1861, 7067)]$ |
| 465690.p2 |
465690p2 |
465690.p |
465690p |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{12} \cdot 3 \cdot 5^{12} \cdot 19^{8} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$516$ |
$16$ |
$0$ |
$8.904534338$ |
$1$ |
|
$0$ |
$137106432$ |
$3.354939$ |
$63395476613331191/129000000000000$ |
$0.95502$ |
$4.83987$ |
$[1, 0, 1, 21352781, 60244350542]$ |
\(y^2+xy+y=x^3+21352781x+60244350542\) |
3.8.0-3.a.1.1, 516.16.0.? |
$[(3031/3, 7008880/3)]$ |
| 465690.q1 |
465690q1 |
465690.q |
465690q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{19} \cdot 3^{7} \cdot 5^{2} \cdot 19^{10} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1032$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$589498560$ |
$4.229141$ |
$292334014104851369809/2279103646924800$ |
$0.99403$ |
$5.86677$ |
$[1, 0, 1, -2530641054, 48668368544656]$ |
\(y^2+xy+y=x^3-2530641054x+48668368544656\) |
1032.2.0.? |
$[ ]$ |
| 465690.r1 |
465690r3 |
465690.r |
465690r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{4} \cdot 3^{20} \cdot 5^{6} \cdot 19^{10} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1061683200$ |
$4.625519$ |
$21330370319108709464713590769/4884813221669250750000$ |
$1.01187$ |
$6.35161$ |
$[1, 0, 1, -20857652599, 1159203434780522]$ |
\(y^2+xy+y=x^3-20857652599x+1159203434780522\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 76.12.0.?, 172.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.r2 |
465690r2 |
465690.r |
465690r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{12} \cdot 19^{8} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$9804$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$530841600$ |
$4.278946$ |
$7224504146467604173590769/2463409872562500000000$ |
$0.99787$ |
$5.73937$ |
$[1, 0, 1, -1453902599, 13675888280522]$ |
\(y^2+xy+y=x^3-1453902599x+13675888280522\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 76.12.0.?, 172.12.0.?, 228.24.0.?, $\ldots$ |
$[ ]$ |
| 465690.r3 |
465690r1 |
465690.r |
465690r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{16} \cdot 3^{5} \cdot 5^{6} \cdot 19^{7} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$265420800$ |
$3.932369$ |
$506530866772858616168689/16163434718208000000$ |
$1.01799$ |
$5.53574$ |
$[1, 0, 1, -599516679, -5492088957494]$ |
\(y^2+xy+y=x^3-599516679x-5492088957494\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 76.12.0.?, 114.6.0.?, $\ldots$ |
$[ ]$ |
| 465690.r4 |
465690r4 |
465690.r |
465690r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{24} \cdot 19^{7} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$1061683200$ |
$4.625519$ |
$184261146868096453165569551/189333915710449218750000$ |
$1.01116$ |
$5.98754$ |
$[1, 0, 1, 4279672681, 94902302557226]$ |
\(y^2+xy+y=x^3+4279672681x+94902302557226\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 152.12.0.?, 344.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.s1 |
465690s1 |
465690.s |
465690s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2 \cdot 3^{4} \cdot 5 \cdot 19^{8} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.991864093$ |
$1$ |
|
$2$ |
$3370752$ |
$1.827438$ |
$-14317849/1497690$ |
$0.85160$ |
$3.46596$ |
$[1, 0, 1, -13004, 7693436]$ |
\(y^2+xy+y=x^3-13004x+7693436\) |
40.2.0.a.1 |
$[(30, 2692)]$ |
| 465690.t1 |
465690t1 |
465690.t |
465690t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{14} \cdot 3^{2} \cdot 5^{4} \cdot 19^{9} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$19608$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$26557440$ |
$2.745590$ |
$8909652277891/3962880000$ |
$0.91044$ |
$4.31514$ |
$[1, 0, 1, -2962374, -944308328]$ |
\(y^2+xy+y=x^3-2962374x-944308328\) |
2.3.0.a.1, 456.6.0.?, 1032.6.0.?, 1634.6.0.?, 19608.12.0.? |
$[ ]$ |
| 465690.t2 |
465690t2 |
465690.t |
465690t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{7} \cdot 3 \cdot 5^{8} \cdot 19^{9} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$19608$ |
$12$ |
$0$ |
$1$ |
$36$ |
$2, 3$ |
$0$ |
$53114880$ |
$3.092163$ |
$364438046686589/277350000000$ |
$0.93902$ |
$4.59950$ |
$[1, 0, 1, 10206906, -7044318824]$ |
\(y^2+xy+y=x^3+10206906x-7044318824\) |
2.3.0.a.1, 456.6.0.?, 1032.6.0.?, 3268.6.0.?, 19608.12.0.? |
$[ ]$ |
| 465690.u1 |
465690u2 |
465690.u |
465690u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2 \cdot 3^{2} \cdot 5^{3} \cdot 19^{6} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$25.23492525$ |
$1$ |
|
$0$ |
$4105728$ |
$1.876234$ |
$263732349218689/4160250$ |
$0.95326$ |
$3.89790$ |
$[1, 0, 1, -482304, -128960948]$ |
\(y^2+xy+y=x^3-482304x-128960948\) |
2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? |
$[(-677327230478/41097, 16792825101465881/41097)]$ |
| 465690.u2 |
465690u1 |
465690.u |
465690u |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3 \cdot 5^{6} \cdot 19^{6} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5160$ |
$12$ |
$0$ |
$12.61746262$ |
$1$ |
|
$1$ |
$2052864$ |
$1.529661$ |
$70393838689/8062500$ |
$0.89632$ |
$3.26742$ |
$[1, 0, 1, -31054, -1888948]$ |
\(y^2+xy+y=x^3-31054x-1888948\) |
2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? |
$[(-386633/57, 76347821/57)]$ |
| 465690.v1 |
465690v1 |
465690.v |
465690v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{9} \cdot 3^{19} \cdot 5^{4} \cdot 19^{8} \cdot 43^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1032$ |
$2$ |
$0$ |
$1.446418249$ |
$1$ |
|
$0$ |
$2451565440$ |
$5.024681$ |
$140209221970077211227558889/54675919559221081920000$ |
$1.02501$ |
$6.41782$ |
$[1, 0, 1, -27820219889, -1019996324705788]$ |
\(y^2+xy+y=x^3-27820219889x-1019996324705788\) |
1032.2.0.? |
$[(-6542016/7, 6105390397/7)]$ |
| 465690.w1 |
465690w1 |
465690.w |
465690w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5^{6} \cdot 19^{7} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3268$ |
$2$ |
$0$ |
$0.780586367$ |
$1$ |
|
$16$ |
$32901120$ |
$2.692863$ |
$3407435858352239/16941312000000$ |
$0.97273$ |
$4.24927$ |
$[1, 0, 1, 1131727, -1276701244]$ |
\(y^2+xy+y=x^3+1131727x-1276701244\) |
3268.2.0.? |
$[(4875, 344122), (3255/2, 105041/2)]$ |
| 465690.x1 |
465690x1 |
465690.x |
465690x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 2^{8} \cdot 3^{19} \cdot 5^{4} \cdot 19^{2} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.582331078$ |
$1$ |
|
$18$ |
$12257280$ |
$2.229588$ |
$8875085298331396319/7996358892960000$ |
$0.97525$ |
$3.79416$ |
$[1, 0, 1, 307127, -48864244]$ |
\(y^2+xy+y=x^3+307127x-48864244\) |
516.2.0.? |
$[(4075, 260402), (430, 12542)]$ |
| 465690.y1 |
465690y3 |
465690.y |
465690y |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 19^{14} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$110592000$ |
$3.328510$ |
$3369010221948854464561/985895834530050$ |
$0.96411$ |
$5.15165$ |
$[1, 0, 1, -112745723, 460658970956]$ |
\(y^2+xy+y=x^3-112745723x+460658970956\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 152.24.0.?, 1032.24.0.?, $\ldots$ |
$[ ]$ |
| 465690.y2 |
465690y2 |
465690.y |
465690y |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 19^{10} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$55296000$ |
$2.981937$ |
$1188055523119228561/439156031602500$ |
$0.93990$ |
$4.54250$ |
$[1, 0, 1, -7965473, 5200180256]$ |
\(y^2+xy+y=x^3-7965473x+5200180256\) |
2.6.0.a.1, 8.12.0.b.1, 76.12.0.?, 152.24.0.?, 516.12.0.?, $\ldots$ |
$[ ]$ |
| 465690.y3 |
465690y1 |
465690.y |
465690y |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 19^{8} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$19608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$27648000$ |
$2.635365$ |
$96779076365428561/2619506250000$ |
$0.91648$ |
$4.35037$ |
$[1, 0, 1, -3452973, -2411504744]$ |
\(y^2+xy+y=x^3-3452973x-2411504744\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |