Learn more

Refine search


Results (1-50 of 118 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
465690.a1 465690.a \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -68958, -6455052]$ \(y^2+xy=x^3+x^2-68958x-6455052\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[ ]$
465690.a2 465690.a \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 75442, -29761212]$ \(y^2+xy=x^3+x^2+75442x-29761212\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[ ]$
465690.b1 465690.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -10466648756828, 13033451602201390032]$ \(y^2+xy=x^3+x^2-10466648756828x+13033451602201390032\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 152.24.0.?, 172.12.0.?, $\ldots$ $[ ]$
465690.b2 465690.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -654165551708, 203647473976759248]$ \(y^2+xy=x^3+x^2-654165551708x+203647473976759248\) 2.6.0.a.1, 8.12.0.b.1, 76.12.0.?, 152.24.0.?, 172.12.0.?, $\ldots$ $[ ]$
465690.b3 465690.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -653333807708, 204191157249309648]$ \(y^2+xy=x^3+x^2-653333807708x+204191157249309648\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 76.12.0.?, 152.24.0.?, $\ldots$ $[ ]$
465690.b4 465690.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -40937335388, 3173481055933392]$ \(y^2+xy=x^3+x^2-40937335388x+3173481055933392\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 76.12.0.?, 152.24.0.?, $\ldots$ $[ ]$
465690.c1 465690.c \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $66.16683881$ $[1, 1, 0, -10202793553, 396644237892757]$ \(y^2+xy=x^3+x^2-10202793553x+396644237892757\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(5415685137653086827836453233202/9722775388187, 346579808002673579978126822086871808177330013/9722775388187)]$
465690.c2 465690.c \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $33.08341940$ $[1, 1, 0, -9625193553, 443534614532757]$ \(y^2+xy=x^3+x^2-9625193553x+443534614532757\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(-77452824380625389/956751, 22402646160178020646099082/956751)]$
465690.d1 465690.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -21813793, 37069872697]$ \(y^2+xy=x^3+x^2-21813793x+37069872697\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 152.12.0.?, 172.12.0.?, $\ldots$ $[ ]$
465690.d2 465690.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -4117573, -2502414467]$ \(y^2+xy=x^3+x^2-4117573x-2502414467\) 2.6.0.a.1, 12.12.0.b.1, 76.12.0.?, 172.12.0.?, 228.24.0.?, $\ldots$ $[ ]$
465690.d3 465690.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3857653, -2917714643]$ \(y^2+xy=x^3+x^2-3857653x-2917714643\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 76.12.0.?, 172.12.0.?, $\ldots$ $[ ]$
465690.d4 465690.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 9419927, -15490291967]$ \(y^2+xy=x^3+x^2+9419927x-15490291967\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 76.12.0.?, $\ldots$ $[ ]$
465690.e1 465690.e \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -47298, -4518648]$ \(y^2+xy=x^3+x^2-47298x-4518648\) 516.2.0.? $[ ]$
465690.f1 465690.f \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.743101800$ $[1, 1, 0, -704318, -229847628]$ \(y^2+xy=x^3+x^2-704318x-229847628\) 3268.2.0.? $[(7028, 581306)]$
465690.g1 465690.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $7.601106891$ $[1, 1, 0, -12384473, 7281986577]$ \(y^2+xy=x^3+x^2-12384473x+7281986577\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[(-2738/3, 2838667/3)]$
465690.g2 465690.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $22.80332067$ $[1, 1, 0, -6341333, -6148716627]$ \(y^2+xy=x^3+x^2-6341333x-6148716627\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[(-122969406998/9171, 712614424662289/9171)]$
465690.g3 465690.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $11.40166033$ $[1, 1, 0, -5980333, -6879164027]$ \(y^2+xy=x^3+x^2-5980333x-6879164027\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[(19972931/58, 79143187481/58)]$
465690.g4 465690.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.800553445$ $[1, 1, 0, 44021777, 55193455327]$ \(y^2+xy=x^3+x^2+44021777x+55193455327\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[(204299/2, 92933701/2)]$
465690.h1 465690.h \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $3.975536815$ $[1, 1, 0, -115888, 50078992]$ \(y^2+xy=x^3+x^2-115888x+50078992\) 2580.2.0.? $[(5204, 372116)]$
465690.i1 465690.i \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $14.47810756$ $[1, 1, 0, -5136279127, -799932667858859]$ \(y^2+xy=x^3+x^2-5136279127x-799932667858859\) 40.2.0.a.1 $[(1025066957, 32818714680584)]$
465690.j1 465690.j \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -9032, -1286976]$ \(y^2+xy=x^3+x^2-9032x-1286976\) 98040.2.0.? $[ ]$
465690.k1 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.233165312$ $[1, 1, 0, -405838012, 3146689270486]$ \(y^2+xy=x^3+x^2-405838012x+3146689270486\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.2, 76.12.0.?, $\ldots$ $[(9707, 344414)]$
465690.k2 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.466330625$ $[1, 1, 0, -25369282, 49141152064]$ \(y^2+xy=x^3+x^2-25369282x+49141152064\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.6, 40.24.0-4.b.1.2, 76.24.0.?, $\ldots$ $[(3418, 47026)]$
465690.k3 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $4.932661251$ $[1, 1, 0, -20225032, 69657449914]$ \(y^2+xy=x^3+x^2-20225032x+69657449914\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.6, 40.24.0-8.n.1.7, $\ldots$ $[(1613, 202256)]$
465690.k4 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $9.865322503$ $[1, 1, 0, -15882202, -24073087544]$ \(y^2+xy=x^3+x^2-15882202x-24073087544\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0-8.n.1.1, 76.12.0.?, $\ldots$ $[(16955, 2131871)]$
465690.k5 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.932661251$ $[1, 1, 0, -1911502, 428726116]$ \(y^2+xy=x^3+x^2-1911502x+428726116\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.4, 40.24.0-4.b.1.3, 76.24.0.?, $\ldots$ $[(1432, 24394)]$
465690.k6 465690.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $9.865322503$ $[1, 1, 0, 427778, 51166324]$ \(y^2+xy=x^3+x^2+427778x+51166324\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0-8.n.1.8, 48.24.0-8.n.1.1, $\ldots$ $[(337525/9, 197071028/9)]$
465690.l1 465690.l \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $13.01702502$ $[1, 1, 0, -1584797, -854371491]$ \(y^2+xy=x^3+x^2-1584797x-854371491\) 98040.2.0.? $[(19110793/89, 67402351489/89)]$
465690.m1 465690.m \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.883184893$ $[1, 1, 0, -60997, -5879219]$ \(y^2+xy=x^3+x^2-60997x-5879219\) 3268.2.0.? $[(522, 9979)]$
465690.n1 465690.n \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $9.201675680$ $[1, 1, 0, -4238147, 3434741709]$ \(y^2+xy=x^3+x^2-4238147x+3434741709\) 516.2.0.? $[(-639338/17, 224595973/17)]$
465690.o1 465690.o \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.149528475$ $[1, 0, 1, -59845144, 178188084326]$ \(y^2+xy+y=x^3-59845144x+178188084326\) 2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? $[(3868, 65753)]$
465690.o2 465690.o \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.299056951$ $[1, 0, 1, -3702424, 2843141222]$ \(y^2+xy+y=x^3-3702424x+2843141222\) 2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? $[(1018, 10862)]$
465690.p1 465690.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/3\Z$ $2.968178112$ $[1, 0, 1, -9615604, 11512499906]$ \(y^2+xy+y=x^3-9615604x+11512499906\) 3.8.0-3.a.1.2, 516.16.0.? $[(1861, 7067)]$
465690.p2 465690.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $8.904534338$ $[1, 0, 1, 21352781, 60244350542]$ \(y^2+xy+y=x^3+21352781x+60244350542\) 3.8.0-3.a.1.1, 516.16.0.? $[(3031/3, 7008880/3)]$
465690.q1 465690.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -2530641054, 48668368544656]$ \(y^2+xy+y=x^3-2530641054x+48668368544656\) 1032.2.0.? $[ ]$
465690.r1 465690.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -20857652599, 1159203434780522]$ \(y^2+xy+y=x^3-20857652599x+1159203434780522\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 76.12.0.?, 172.12.0.?, $\ldots$ $[ ]$
465690.r2 465690.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1453902599, 13675888280522]$ \(y^2+xy+y=x^3-1453902599x+13675888280522\) 2.6.0.a.1, 12.12.0-2.a.1.1, 76.12.0.?, 172.12.0.?, 228.24.0.?, $\ldots$ $[ ]$
465690.r3 465690.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -599516679, -5492088957494]$ \(y^2+xy+y=x^3-599516679x-5492088957494\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 76.12.0.?, 114.6.0.?, $\ldots$ $[ ]$
465690.r4 465690.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 4279672681, 94902302557226]$ \(y^2+xy+y=x^3+4279672681x+94902302557226\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 152.12.0.?, 344.12.0.?, $\ldots$ $[ ]$
465690.s1 465690.s \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.991864093$ $[1, 0, 1, -13004, 7693436]$ \(y^2+xy+y=x^3-13004x+7693436\) 40.2.0.a.1 $[(30, 2692)]$
465690.t1 465690.t \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2962374, -944308328]$ \(y^2+xy+y=x^3-2962374x-944308328\) 2.3.0.a.1, 456.6.0.?, 1032.6.0.?, 1634.6.0.?, 19608.12.0.? $[ ]$
465690.t2 465690.t \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 10206906, -7044318824]$ \(y^2+xy+y=x^3+10206906x-7044318824\) 2.3.0.a.1, 456.6.0.?, 1032.6.0.?, 3268.6.0.?, 19608.12.0.? $[ ]$
465690.u1 465690.u \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $25.23492525$ $[1, 0, 1, -482304, -128960948]$ \(y^2+xy+y=x^3-482304x-128960948\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[(-677327230478/41097, 16792825101465881/41097)]$
465690.u2 465690.u \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $12.61746262$ $[1, 0, 1, -31054, -1888948]$ \(y^2+xy+y=x^3-31054x-1888948\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[(-386633/57, 76347821/57)]$
465690.v1 465690.v \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.446418249$ $[1, 0, 1, -27820219889, -1019996324705788]$ \(y^2+xy+y=x^3-27820219889x-1019996324705788\) 1032.2.0.? $[(-6542016/7, 6105390397/7)]$
465690.w1 465690.w \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $0.780586367$ $[1, 0, 1, 1131727, -1276701244]$ \(y^2+xy+y=x^3+1131727x-1276701244\) 3268.2.0.? $[(4875, 344122), (3255/2, 105041/2)]$
465690.x1 465690.x \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $0.582331078$ $[1, 0, 1, 307127, -48864244]$ \(y^2+xy+y=x^3+307127x-48864244\) 516.2.0.? $[(4075, 260402), (430, 12542)]$
465690.y1 465690.y \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -112745723, 460658970956]$ \(y^2+xy+y=x^3-112745723x+460658970956\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 152.24.0.?, 1032.24.0.?, $\ldots$ $[ ]$
465690.y2 465690.y \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -7965473, 5200180256]$ \(y^2+xy+y=x^3-7965473x+5200180256\) 2.6.0.a.1, 8.12.0.b.1, 76.12.0.?, 152.24.0.?, 516.12.0.?, $\ldots$ $[ ]$
465690.y3 465690.y \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3452973, -2411504744]$ \(y^2+xy+y=x^3-3452973x-2411504744\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 76.12.0.?, 152.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results