Show commands for:
SageMath
sage: E = EllipticCurve("o1")
sage: E.isogeny_class()
Elliptic curves in class 465690o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
465690.o2 | 465690o1 | [1, 0, 1, -3702424, 2843141222] | [2] | 34836480 | \(\Gamma_0(N)\)-optimal* |
465690.o1 | 465690o2 | [1, 0, 1, -59845144, 178188084326] | [2] | 69672960 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 465690o have rank \(1\).
Complex multiplication
The elliptic curves in class 465690o do not have complex multiplication.Modular form 465690.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.