Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-632712x+163713888\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-632712xz^2+163713888z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-51249699x+119501173422\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-873, 7176)$ | $4.1085471215534059375492569574$ | $\infty$ |
$(599, 0)$ | $0$ | $2$ |
Integral points
\((-873,\pm 7176)\), \( \left(599, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 464232 \) | = | $2^{3} \cdot 3 \cdot 23 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $4602174187768777728$ | = | $2^{10} \cdot 3^{3} \cdot 23^{4} \cdot 29^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{45989074372}{7555707} \) | = | $2^{2} \cdot 3^{-3} \cdot 23^{-4} \cdot 37^{3} \cdot 61^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3027189488420949680082727314$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.041448383382236863235609947337$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9626262468353085$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9612479357753063$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.1085471215534059375492569574$ |
|
Real period: | $\Omega$ | ≈ | $0.23363265047244178996439868016$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot3\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $11.518689043193324423701636681 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.518689043 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.233633 \cdot 4.108547 \cdot 48}{2^2} \\ & \approx 11.518689043\end{aligned}$$
Modular invariants
Modular form 464232.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 9633792 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
$3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$23$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$29$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 16008 = 2^{3} \cdot 3 \cdot 23 \cdot 29 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 15455 & 0 \\ 0 & 16007 \end{array}\right),\left(\begin{array}{rr} 11137 & 11600 \\ 10324 & 14385 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 16002 & 16003 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 16001 & 8 \\ 16000 & 9 \end{array}\right),\left(\begin{array}{rr} 9020 & 15457 \\ 8671 & 13254 \end{array}\right),\left(\begin{array}{rr} 12355 & 12354 \\ 2842 & 13051 \end{array}\right),\left(\begin{array}{rr} 8904 & 13601 \\ 10585 & 1248 \end{array}\right)$.
The torsion field $K:=\Q(E[16008])$ is a degree-$279905202339840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/16008\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2523 = 3 \cdot 29^{2} \) |
$3$ | split multiplicative | $4$ | \( 154744 = 2^{3} \cdot 23 \cdot 29^{2} \) |
$23$ | split multiplicative | $24$ | \( 20184 = 2^{3} \cdot 3 \cdot 29^{2} \) |
$29$ | additive | $422$ | \( 552 = 2^{3} \cdot 3 \cdot 23 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 464232.r
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 552.c1, its twist by $29$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.