Properties

Label 464232.r
Number of curves $4$
Conductor $464232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 464232.r have rank \(1\).

Complex multiplication

The elliptic curves in class 464232.r do not have complex multiplication.

Modular form 464232.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 464232.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
464232.r1 464232r3 \([0, 1, 0, -632712, 163713888]\) \(45989074372/7555707\) \(4602174187768777728\) \([2]\) \(9633792\) \(2.3027\) \(\Gamma_0(N)\)-optimal*
464232.r2 464232r2 \([0, 1, 0, -178572, -26661600]\) \(4135597648/385641\) \(58723394645442816\) \([2, 2]\) \(4816896\) \(1.9561\) \(\Gamma_0(N)\)-optimal*
464232.r3 464232r1 \([0, 1, 0, -174367, -28082890]\) \(61604313088/621\) \(5910164517456\) \([2]\) \(2408448\) \(1.6096\) \(\Gamma_0(N)\)-optimal*
464232.r4 464232r4 \([0, 1, 0, 208288, -126007248]\) \(1640689628/12223143\) \(-7445105164613532672\) \([2]\) \(9633792\) \(2.3027\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 464232.r1.