Properties

Label 462722p
Number of curves $1$
Conductor $462722$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 462722p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 462722p do not have complex multiplication.

Modular form 462722.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 3 q^{5} + q^{8} - 3 q^{9} + 3 q^{10} + 3 q^{11} + q^{16} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 462722p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
462722.p1 462722p1 \([1, -1, 1, 18909, -436861]\) \(1724463/1184\) \(-513391591535264\) \([]\) \(1313280\) \(1.5113\) \(\Gamma_0(N)\)-optimal