Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-12731076x+104806732298\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-12731076xz^2+104806732298z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-16499473875x+4889912400528750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2598, 348211)$ | $2.2866268830820624341062630418$ | $\infty$ |
$(39452, 7791061)$ | $5.1366032496559499661308224643$ | $\infty$ |
Integral points
\( \left(-5348, 143886\right) \), \( \left(-5348, -138539\right) \), \( \left(-2598, 348211\right) \), \( \left(-2598, -345614\right) \), \( \left(39452, 7791061\right) \), \( \left(39452, -7830514\right) \)
Invariants
Conductor: | $N$ | = | \( 462550 \) | = | $2 \cdot 5^{2} \cdot 11 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $-4613317755157516590625000$ | = | $-1 \cdot 2^{3} \cdot 5^{8} \cdot 11^{2} \cdot 29^{11} $ |
|
j-invariant: | $j$ | = | \( -\frac{982134513985}{19854792232} \) | = | $-1 \cdot 2^{-3} \cdot 5 \cdot 11^{-2} \cdot 29^{-5} \cdot 5813^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4135073334405569756867369547$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.65690081015791971236126138303$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9330897987157233$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.927278508725074$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.049096509585135139539545342$ |
|
Real period: | $\Omega$ | ≈ | $0.065013984391954677256466829908$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.6201494562324265478782908520 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.620149456 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.065014 \cdot 11.049097 \cdot 12}{1^2} \\ & \approx 8.620149456\end{aligned}$$
Modular invariants
Modular form 462550.2.a.f
For more coefficients, see the Downloads section to the right.
Modular degree: | 90720000 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$29$ | $2$ | $I_{5}^{*}$ | additive | 1 | 2 | 11 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 232 = 2^{3} \cdot 29 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 89 & 2 \\ 89 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 231 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 117 & 2 \\ 117 & 3 \end{array}\right),\left(\begin{array}{rr} 231 & 2 \\ 230 & 3 \end{array}\right),\left(\begin{array}{rr} 175 & 2 \\ 175 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[232])$ is a degree-$523837440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/232\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 21025 = 5^{2} \cdot 29^{2} \) |
$3$ | good | $2$ | \( 231275 = 5^{2} \cdot 11 \cdot 29^{2} \) |
$5$ | additive | $14$ | \( 18502 = 2 \cdot 11 \cdot 29^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 42050 = 2 \cdot 5^{2} \cdot 29^{2} \) |
$29$ | additive | $450$ | \( 550 = 2 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 462550f consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 15950e1, its twist by $145$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.