Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-54558781x+155073778105\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-54558781xz^2+155073778105z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-70708180851x+7236182813976270\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(17195/4, -17195/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 462462 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $2061797243493611547924$ | = | $2^{2} \cdot 3 \cdot 7^{14} \cdot 11^{7} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{86173423834915873}{9892398516} \) | = | $2^{-2} \cdot 3^{-1} \cdot 7^{-8} \cdot 11^{-1} \cdot 13^{-1} \cdot 441697^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1168825345789989140780018895$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.94497982365215698949435372880$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9465674840902374$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.987456026214225$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14128102586138668240932126569$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot1\cdot2^{2}\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.1302482068910934592745701255 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.130248207 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.141281 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.130248207\end{aligned}$$
Modular invariants
Modular form 462462.2.a.t
For more coefficients, see the Downloads section to the right.
Modular degree: | 70778880 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$7$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 24024 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 13096 & 17157 \\ 22771 & 13726 \end{array}\right),\left(\begin{array}{rr} 20591 & 0 \\ 0 & 24023 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 24018 & 24019 \end{array}\right),\left(\begin{array}{rr} 7400 & 6867 \\ 20069 & 10298 \end{array}\right),\left(\begin{array}{rr} 3011 & 13300 \\ 6482 & 18453 \end{array}\right),\left(\begin{array}{rr} 24017 & 8 \\ 24016 & 9 \end{array}\right),\left(\begin{array}{rr} 14876 & 10297 \\ 12607 & 3438 \end{array}\right),\left(\begin{array}{rr} 21883 & 21882 \\ 10738 & 5587 \end{array}\right)$.
The torsion field $K:=\Q(E[24024])$ is a degree-$1071246842265600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24024\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 231231 = 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 154154 = 2 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9438 = 2 \cdot 3 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $72$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 35574 = 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 462462t
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 6006bb4, its twist by $77$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.