Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-32194x+1718135\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-32194xz^2+1718135z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-41723451x+80787166614\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(391, 6811)$ | $1.1730338484442009976632164396$ | $\infty$ |
$(55, 315)$ | $1.6247694746452250484683427389$ | $\infty$ |
$(563/4, -567/8)$ | $0$ | $2$ |
Integral points
\( \left(-181, 1377\right) \), \( \left(-181, -1197\right) \), \( \left(-1, 1323\right) \), \( \left(-1, -1323\right) \), \( \left(55, 315\right) \), \( \left(55, -371\right) \), \( \left(147, 361\right) \), \( \left(147, -509\right) \), \( \left(251, 2961\right) \), \( \left(251, -3213\right) \), \( \left(391, 6811\right) \), \( \left(391, -7203\right) \), \( \left(1011, 31177\right) \), \( \left(1011, -32189\right) \)
Invariants
Conductor: | $N$ | = | \( 462462 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $840280114746072$ | = | $2^{3} \cdot 3^{4} \cdot 7^{8} \cdot 11^{3} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{23565848363}{5366088} \) | = | $2^{-3} \cdot 3^{-4} \cdot 7^{-2} \cdot 13^{-2} \cdot 47^{3} \cdot 61^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5763071585306701570942713224$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.0038782658034208685261090561859$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9647298744340616$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.277458095986395$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.6182932248759132738383322092$ |
|
Real period: | $\Omega$ | ≈ | $0.47195458681662619114607712808$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 3\cdot2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $18.330261847066972389940652157 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 18.330261847 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.471955 \cdot 1.618293 \cdot 96}{2^2} \\ & \approx 18.330261847\end{aligned}$$
Modular invariants
Modular form 462462.2.a.fz
For more coefficients, see the Downloads section to the right.
Modular degree: | 2654208 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8008 = 2^{3} \cdot 7 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 3433 & 4 \\ 6866 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 4003 & 0 \end{array}\right),\left(\begin{array}{rr} 3004 & 5009 \\ 1001 & 7008 \end{array}\right),\left(\begin{array}{rr} 8005 & 4 \\ 8004 & 5 \end{array}\right),\left(\begin{array}{rr} 4929 & 4 \\ 1850 & 9 \end{array}\right),\left(\begin{array}{rr} 1460 & 1 \\ 3639 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[8008])$ is a degree-$89270570188800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8008\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 539 = 7^{2} \cdot 11 \) |
$3$ | nonsplit multiplicative | $4$ | \( 77077 = 7^{2} \cdot 11^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9438 = 2 \cdot 3 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $42$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 35574 = 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 462462.fz
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 66066.cw1, its twist by $-7$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.