Properties

Label 462400co
Number of curves $2$
Conductor $462400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("co1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 462400co have rank \(1\).

Complex multiplication

The elliptic curves in class 462400co do not have complex multiplication.

Modular form 462400.2.a.co

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{7} - 2 q^{9} - q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 462400co

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
462400.co1 462400co1 \([0, -1, 0, -23233, 1373537]\) \(-1723025/4\) \(-3219783680000\) \([]\) \(737280\) \(1.2808\) \(\Gamma_0(N)\)-optimal
462400.co2 462400co2 \([0, -1, 0, 167167, -22426463]\) \(1026895/1024\) \(-515165388800000000\) \([]\) \(3686400\) \(2.0855\)