Properties

Label 462384cw
Number of curves $2$
Conductor $462384$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 462384cw have rank \(2\).

Complex multiplication

The elliptic curves in class 462384cw do not have complex multiplication.

Modular form 462384.2.a.cw

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{11} - 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 462384cw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
462384.cw1 462384cw1 \([0, 0, 0, -2535, 30758]\) \(54000/19\) \(633895172352\) \([2]\) \(294912\) \(0.96588\) \(\Gamma_0(N)\)-optimal
462384.cw2 462384cw2 \([0, 0, 0, 7605, 215306]\) \(364500/361\) \(-48176033098752\) \([2]\) \(589824\) \(1.3125\)