Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-278568x+56675696\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-278568xz^2+56675696z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-22564035x+41248890306\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(308, 0)$ | $0$ | $2$ |
Integral points
\( \left(308, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 45968 \) | = | $2^{4} \cdot 13^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $388532021116928$ | = | $2^{14} \cdot 13^{6} \cdot 17^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{120920208625}{19652} \) | = | $2^{-2} \cdot 5^{3} \cdot 17^{-3} \cdot 23^{3} \cdot 43^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8085356670763065364896102828$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16708619221440714095436555944$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.985640636788803$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.585248792493754$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.51702913508906903266200308115$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.0681165403562761306480123246 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.068116540 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.517029 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 2.068116540\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 331776 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
| $13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2653 & 3276 \\ 1638 & 3745 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 5254 & 5295 \end{array}\right),\left(\begin{array}{rr} 5293 & 12 \\ 5292 & 13 \end{array}\right),\left(\begin{array}{rr} 2039 & 0 \\ 0 & 5303 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 5266 & 819 \\ 429 & 2848 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5277 & 728 \\ 4498 & 4003 \end{array}\right),\left(\begin{array}{rr} 1769 & 3276 \\ 4420 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5304])$ is a degree-$1576726953984$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5304\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2873 = 13^{2} \cdot 17 \) |
| $3$ | good | $2$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $13$ | additive | $86$ | \( 272 = 2^{4} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 45968k
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34a3, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{39}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.4.735488.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{17}, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.410012928.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.176484635701504.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.156332410863616.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.43816350449664.2 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.197610951517275075587146200129359260044754944.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 13 | 17 |
|---|---|---|---|---|
| Reduction type | add | ord | add | nonsplit |
| $\lambda$-invariant(s) | - | 0 | - | 0 |
| $\mu$-invariant(s) | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.