Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-37569315x-88631070046\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-37569315xz^2-88631070046z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-37569315x-88631070046\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-3554, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3554, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 45936 \) | = | $2^{4} \cdot 3^{2} \cdot 11 \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $188102732707766181888$ | = | $2^{13} \cdot 3^{12} \cdot 11^{6} \cdot 29^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{1963975500122834382625}{62995224591882} \) | = | $2^{-1} \cdot 3^{-6} \cdot 5^{3} \cdot 7^{3} \cdot 11^{-6} \cdot 29^{-3} \cdot 43^{3} \cdot 53^{3} \cdot 157^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9852289066678023590618248260$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7427755817738022039469700861$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0126949228662705$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.9560942120262945$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.060980653101568703700995789325$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot2^{2}\cdot2\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.9270713488752977776477978876 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.927071349 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.060981 \cdot 1.000000 \cdot 48}{2^2} \\ & \approx 2.927071349\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2985984 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
| $3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $11$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $29$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7656 = 2^{3} \cdot 3 \cdot 11 \cdot 29 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 10 & 3 \\ 3801 & 7648 \end{array}\right),\left(\begin{array}{rr} 7645 & 12 \\ 7644 & 13 \end{array}\right),\left(\begin{array}{rr} 3442 & 3 \\ 5253 & 7648 \end{array}\right),\left(\begin{array}{rr} 2785 & 12 \\ 1398 & 73 \end{array}\right),\left(\begin{array}{rr} 309 & 1592 \\ 346 & 1603 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 2551 & 7644 \\ 6374 & 7583 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 7606 & 7647 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[7656])$ is a degree-$6914654208000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7656\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 261 = 3^{2} \cdot 29 \) |
| $3$ | additive | $6$ | \( 16 = 2^{4} \) |
| $11$ | nonsplit multiplicative | $12$ | \( 4176 = 2^{4} \cdot 3^{2} \cdot 29 \) |
| $29$ | split multiplicative | $30$ | \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 45936bk
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 1914m4, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{58}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.252648.2 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{58})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.559872.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.3435640384720896.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4085184761856.3 | \(\Z/12\Z\) | not in database |
| $12$ | 12.0.313456656384.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.11838610277948553081963457223149486948718242430976.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 11 | 29 |
|---|---|---|---|---|
| Reduction type | add | add | nonsplit | split |
| $\lambda$-invariant(s) | - | - | 0 | 1 |
| $\mu$-invariant(s) | - | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.