Properties

Label 459186h1
Conductor $459186$
Discriminant $-1.783\times 10^{21}$
j-invariant \( \frac{40251338884511}{2997011332224} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3+x^2+600457x-2023244139\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3+x^2z+600457xz^2-2023244139z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3+778191597x-94408151426514\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 1, 0, 600457, -2023244139])
 
Copy content gp:E = ellinit([1, 1, 0, 600457, -2023244139])
 
Copy content magma:E := EllipticCurve([1, 1, 0, 600457, -2023244139]);
 
Copy content oscar:E = elliptic_curve([1, 1, 0, 600457, -2023244139])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: $N$  =  \( 459186 \) = $2 \cdot 3 \cdot 7 \cdot 13 \cdot 29^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $-1782692233708113995904$ = $-1 \cdot 2^{7} \cdot 3^{7} \cdot 7^{7} \cdot 13 \cdot 29^{6} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( \frac{40251338884511}{2997011332224} \) = $2^{-7} \cdot 3^{-7} \cdot 7^{-7} \cdot 13^{-1} \cdot 43^{3} \cdot 797^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $2.7572405144922967861639535081$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $1.0735925994990597725723174919$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.0387829692161805$
Szpiro ratio: $\sigma_{m}$ ≈ $4.32449321811433$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 0$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 0$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ = $1$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.070871096926923085667873459554$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 7 $  = $ 1\cdot1\cdot7\cdot1\cdot1 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $1$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L(E,1)$ ≈ $0.49609767848846159967511421688 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  =  $1$    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 0.496097678 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.070871 \cdot 1.000000 \cdot 7}{1^2} \\ & \approx 0.496097678\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 1, 0, 600457, -2023244139]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 1, 0, 600457, -2023244139]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 459186.2.a.h

\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 5 q^{11} - q^{12} - q^{13} - q^{14} + q^{15} + q^{16} + 3 q^{17} - q^{18} + q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 26968032
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $1$ $I_{7}$ nonsplit multiplicative 1 1 7 7
$3$ $1$ $I_{7}$ nonsplit multiplicative 1 1 7 7
$7$ $7$ $I_{7}$ split multiplicative -1 1 7 7
$13$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$29$ $1$ $I_0^{*}$ additive 1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$7$ 7B.6.1 7.24.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[8, 5, 91, 57], [19489, 45878, 1015, 4467], [1, 14, 0, 1], [15835, 14210, 38773, 24825], [1, 0, 14, 1], [21113, 45878, 12383, 4467], [34943, 0, 0, 63335], [31669, 45878, 22939, 4467], [47503, 45878, 7105, 4467], [63323, 14, 63322, 15]] GL(2,Integers(63336)).subgroup(gens)
 
Copy content magma:Gens := [[8, 5, 91, 57], [19489, 45878, 1015, 4467], [1, 14, 0, 1], [15835, 14210, 38773, 24825], [1, 0, 14, 1], [21113, 45878, 12383, 4467], [34943, 0, 0, 63335], [31669, 45878, 22939, 4467], [47503, 45878, 7105, 4467], [63323, 14, 63322, 15]]; sub<GL(2,Integers(63336))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 63336 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \cdot 29 \), index $96$, genus $2$, and generators

$\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 19489 & 45878 \\ 1015 & 4467 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15835 & 14210 \\ 38773 & 24825 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 21113 & 45878 \\ 12383 & 4467 \end{array}\right),\left(\begin{array}{rr} 34943 & 0 \\ 0 & 63335 \end{array}\right),\left(\begin{array}{rr} 31669 & 45878 \\ 22939 & 4467 \end{array}\right),\left(\begin{array}{rr} 47503 & 45878 \\ 7105 & 4467 \end{array}\right),\left(\begin{array}{rr} 63323 & 14 \\ 63322 & 15 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[63336])$ is a degree-$27677122961080320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/63336\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ nonsplit multiplicative $4$ \( 229593 = 3 \cdot 7 \cdot 13 \cdot 29^{2} \)
$3$ nonsplit multiplicative $4$ \( 153062 = 2 \cdot 7 \cdot 13 \cdot 29^{2} \)
$7$ split multiplicative $8$ \( 10933 = 13 \cdot 29^{2} \)
$13$ nonsplit multiplicative $14$ \( 35322 = 2 \cdot 3 \cdot 7 \cdot 29^{2} \)
$29$ additive $422$ \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 7.
Its isogeny class 459186h consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 546f1, its twist by $29$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.