Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1756083x-589328782\)
|
(homogenize, simplify) |
\(y^2z=x^3-1756083xz^2-589328782z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1756083x-589328782\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-377, 4374)$ | $2.5273731792820771704537449243$ | $\infty$ |
$(10558, 1076004)$ | $5.4850705092631682260937625118$ | $\infty$ |
$(-1106, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1106, 0\right) \), \((-577,\pm 15226)\), \((-377,\pm 4374)\), \((1519,\pm 15750)\), \((10558,\pm 1076004)\), \((23858,\pm 3679346)\)
Invariants
Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $196552016833536000000$ | = | $2^{16} \cdot 3^{16} \cdot 5^{6} \cdot 7^{3} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{584759426925367}{191909250000} \) | = | $2^{-4} \cdot 3^{-10} \cdot 5^{-6} \cdot 13^{-1} \cdot 17^{3} \cdot 4919^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5969880171036037026175227810$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.86805715494577522122632985522$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9755151248196078$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.199854583279963$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $13.230861669864103538553059219$ |
|
Real period: | $\Omega$ | ≈ | $0.13458686848131878638528570222$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $14.245601915652175701217267373 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.245601916 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.134587 \cdot 13.230862 \cdot 32}{2^2} \\ & \approx 14.245601916\end{aligned}$$
Modular invariants
Modular form 458640.2.a.s
For more coefficients, see the Downloads section to the right.
Modular degree: | 11796480 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
$3$ | $4$ | $I_{10}^{*}$ | additive | -1 | 2 | 16 | 10 |
$5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 2942 & 1 \\ 1259 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3641 & 4 \\ 1822 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3904 & 1 \\ 3119 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 5457 & 4 \\ 5456 & 5 \end{array}\right),\left(\begin{array}{rr} 3277 & 4 \\ 1094 & 9 \end{array}\right),\left(\begin{array}{rr} 4096 & 1369 \\ 1365 & 4096 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
$3$ | additive | $8$ | \( 10192 = 2^{4} \cdot 7^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $20$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 458640s
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 19110dd2, its twist by $12$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.