Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-3482283x-2441087782\)
|
(homogenize, simplify) |
\(y^2z=x^3-3482283xz^2-2441087782z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3482283x-2441087782\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-938, 0)$ | $0$ | $2$ |
$(2149, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1211, 0\right) \), \( \left(-938, 0\right) \), \( \left(2149, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $128291265891713433600$ | = | $2^{14} \cdot 3^{8} \cdot 5^{2} \cdot 7^{10} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{13293525831769}{365192100} \) | = | $2^{-2} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-4} \cdot 13^{-2} \cdot 23689^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6381749847029041116643207866$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.42276658528124730399678967496$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9137772472489275$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.357403200189055$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.11070370710041050408273699888$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7712593136065680653237919821 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.771259314 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110704 \cdot 1.000000 \cdot 256}{4^2} \\ & \approx 1.771259314\end{aligned}$$
Modular invariants
Modular form 458640.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 14155776 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 7491 & 3122 \\ 1246 & 7799 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8583 & 3122 \\ 7798 & 7799 \end{array}\right),\left(\begin{array}{rr} 7279 & 7798 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 5067 & 7798 \\ 1568 & 9365 \end{array}\right),\left(\begin{array}{rr} 10917 & 4 \\ 10916 & 5 \end{array}\right),\left(\begin{array}{rr} 4201 & 6244 \\ 602 & 1569 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 50960 = 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 458640r
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730f2, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.