Properties

Label 458640kv
Number of curves $4$
Conductor $458640$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 458640kv have rank \(1\).

Complex multiplication

The elliptic curves in class 458640kv do not have complex multiplication.

Modular form 458640.2.a.kv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 458640kv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
458640.kv4 458640kv1 \([0, 0, 0, 28206213, -2172334934]\) \(7064514799444439/4094064000000\) \(-1438236624509927424000000\) \([2]\) \(49766400\) \(3.3249\) \(\Gamma_0(N)\)-optimal*
458640.kv3 458640kv2 \([0, 0, 0, -112913787, -17385070934]\) \(453198971846635561/261896250564000\) \(92003637310743929831424000\) \([2]\) \(99532800\) \(3.6715\) \(\Gamma_0(N)\)-optimal*
458640.kv2 458640kv3 \([0, 0, 0, -376631787, 3034765168666]\) \(-16818951115904497561/1592332281446400\) \(-559383196150734837409382400\) \([2]\) \(149299200\) \(3.8742\) \(\Gamma_0(N)\)-optimal*
458640.kv1 458640kv4 \([0, 0, 0, -6156906987, 185946949652506]\) \(73474353581350183614361/576510977802240\) \(202527171706942381715619840\) \([2]\) \(298598400\) \(4.2208\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 4 curves highlighted, and conditionally curve 458640kv1.