Properties

Label 458640dp
Number of curves $4$
Conductor $458640$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 458640dp have rank \(1\).

Complex multiplication

The elliptic curves in class 458640dp do not have complex multiplication.

Modular form 458640.2.a.dp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 458640dp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
458640.dp3 458640dp1 \([0, 0, 0, -95403, -11001382]\) \(273359449/9360\) \(3288149575925760\) \([2]\) \(2359296\) \(1.7493\) \(\Gamma_0(N)\)-optimal*
458640.dp2 458640dp2 \([0, 0, 0, -236523, 29104922]\) \(4165509529/1368900\) \(480891875479142400\) \([2, 2]\) \(4718592\) \(2.0959\) \(\Gamma_0(N)\)-optimal*
458640.dp1 458640dp3 \([0, 0, 0, -3411723, 2425110842]\) \(12501706118329/2570490\) \(903008077288611840\) \([2]\) \(9437184\) \(2.4424\) \(\Gamma_0(N)\)-optimal*
458640.dp4 458640dp4 \([0, 0, 0, 680757, 199902458]\) \(99317171591/106616250\) \(-37454078763279360000\) \([2]\) \(9437184\) \(2.4424\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 458640dp1.