Properties

Label 458640df
Number of curves $4$
Conductor $458640$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 458640df have rank \(0\).

Complex multiplication

The elliptic curves in class 458640df do not have complex multiplication.

Modular form 458640.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 458640df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
458640.df4 458640df1 \([0, 0, 0, 45717, -3976742]\) \(30080231/36855\) \(-12947088955207680\) \([2]\) \(2359296\) \(1.7778\) \(\Gamma_0(N)\)-optimal*
458640.df3 458640df2 \([0, 0, 0, -271803, -38205398]\) \(6321363049/1863225\) \(654547274957721600\) \([2, 2]\) \(4718592\) \(2.1243\) \(\Gamma_0(N)\)-optimal*
458640.df2 458640df3 \([0, 0, 0, -1647723, 784319578]\) \(1408317602329/58524375\) \(20559497739056640000\) \([2]\) \(9437184\) \(2.4709\) \(\Gamma_0(N)\)-optimal*
458640.df1 458640df4 \([0, 0, 0, -3976203, -3051364358]\) \(19790357598649/2998905\) \(1053509423503380480\) \([2]\) \(9437184\) \(2.4709\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 458640df1.