Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-42483x-21634382\) | (homogenize, simplify) | 
| \(y^2z=x^3-42483xz^2-21634382z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-42483x-21634382\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(329, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(329, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $-197288974555545600$ | = | $-1 \cdot 2^{18} \cdot 3^{9} \cdot 5^{2} \cdot 7^{6} \cdot 13 $ |  | 
| j-invariant: | $j$ | = | \( -\frac{24137569}{561600} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-3} \cdot 5^{-2} \cdot 13^{-1} \cdot 17^{6}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9993518772895847011172473011$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.21605652213207210655028381054$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0814038063027782$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6286175628987314$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.13753566868708176782842108232$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $1.1002853494966541426273686585 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 1.100285349 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.137536 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.100285349\end{aligned}$$
Modular invariants
Modular form 458640.2.a.db
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3317760 |  | 
| $ \Gamma_0(N) $-optimal: | not computed* (one of 4 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 | 
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 4605 & 1232 \\ 6202 & 9043 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5461 & 7812 \\ 9366 & 3193 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 10909 & 12 \\ 10908 & 13 \end{array}\right),\left(\begin{array}{rr} 8737 & 7812 \\ 7182 & 3193 \end{array}\right),\left(\begin{array}{rr} 1450 & 4683 \\ 8253 & 7792 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1294 & 4669 \\ 9891 & 20 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 10870 & 10911 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) | 
| $3$ | additive | $2$ | \( 50960 = 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) | 
| $7$ | additive | $26$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 458640db
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 390c1, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
