Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-101207883x-391894428422\)
|
(homogenize, simplify) |
\(y^2z=x^3-101207883xz^2-391894428422z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-101207883x-391894428422\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-5803, 0)$ | $0$ | $2$ |
Integral points
\( \left(-5803, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $163599416038004244480$ | = | $2^{14} \cdot 3^{15} \cdot 5 \cdot 7^{7} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{326355561310674169}{465699780} \) | = | $2^{-2} \cdot 3^{-9} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-2} \cdot 29^{3} \cdot 23741^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1500580077082594477145543226$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.93464960828660264004702321096$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9713151603119757$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.132828900285132$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.047598800297349020714206792340$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot1\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.38079040237879216571365433872 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.380790402 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.047599 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.380790402\end{aligned}$$
Modular invariants
Modular form 458640.2.a.d
For more coefficients, see the Downloads section to the right.
Modular degree: | 47775744 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
$3$ | $2$ | $I_{9}^{*}$ | additive | -1 | 2 | 15 | 9 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 32760 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 26236 & 27 \\ 13413 & 298 \end{array}\right),\left(\begin{array}{rr} 7252 & 32733 \\ 21531 & 32462 \end{array}\right),\left(\begin{array}{rr} 17665 & 36 \\ 11874 & 9841 \end{array}\right),\left(\begin{array}{rr} 32725 & 36 \\ 32724 & 37 \end{array}\right),\left(\begin{array}{rr} 23396 & 32751 \\ 28001 & 32582 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 16381 & 36 \\ 10 & 361 \end{array}\right),\left(\begin{array}{rr} 24569 & 32724 \\ 0 & 32759 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[32760])$ is a degree-$175294937825280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/32760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
$3$ | additive | $2$ | \( 50960 = 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 458640d
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 2730p1, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.