Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-3732454803x+87768757374802\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-3732454803xz^2+87768757374802z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3732454803x+87768757374802\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(35273, 0)$ | $0$ | $2$ |
Integral points
\( \left(35273, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1748256610464000000000$ | = | $2^{14} \cdot 3^{6} \cdot 5^{9} \cdot 7^{8} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{16369358802802724130049}{4976562500} \) | = | $2^{-2} \cdot 5^{-9} \cdot 7^{-2} \cdot 11^{3} \cdot 13^{-1} \cdot 41^{3} \cdot 56299^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8783805486259628408530176183$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6629721492043060331854865067$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0121276523788763$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.963061869655253$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.088601389750100925506445439601$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot1\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.70881111800080740405156351680 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.708811118 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.088601 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.708811118\end{aligned}$$
Modular invariants
Modular form 458640.2.a.dc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 143327232 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 2.3.0.1 | $3$ |
| $3$ | 3B | 9.12.0.1 | $12$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 32760 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 26236 & 27 \\ 13413 & 298 \end{array}\right),\left(\begin{array}{rr} 32725 & 36 \\ 32724 & 37 \end{array}\right),\left(\begin{array}{rr} 3635 & 32724 \\ 25616 & 979 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 12616 & 9 \\ 28487 & 31774 \end{array}\right),\left(\begin{array}{rr} 16381 & 36 \\ 10 & 361 \end{array}\right),\left(\begin{array}{rr} 23375 & 32724 \\ 21246 & 22919 \end{array}\right),\left(\begin{array}{rr} 24569 & 32724 \\ 0 & 32759 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[32760])$ is a degree-$175294937825280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/32760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 28665 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
| $3$ | additive | $2$ | \( 10192 = 2^{4} \cdot 7^{2} \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 458640.dc
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 910.g2, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.