Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-14113323x-18670157478\)
|
(homogenize, simplify) |
\(y^2z=x^3-14113323xz^2-18670157478z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-14113323x-18670157478\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-35533127/13456, 21206218285/1560896)$ | $15.455892933112800052087303442$ | $\infty$ |
$(-2667, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2667, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $29330878777182388224000$ | = | $2^{32} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{884984855328729}{83492864000} \) | = | $2^{-20} \cdot 3^{3} \cdot 5^{-3} \cdot 7^{-2} \cdot 13^{-1} \cdot 32003^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0492255167015595541625958719$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.83381711727990274649506476026$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9692185652309827$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.679456489128858$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $15.455892933112800052087303442$ |
|
Real period: | $\Omega$ | ≈ | $0.078363206678895635424107573799$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot1\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $9.6893866585952066047289300832 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.689386659 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.078363 \cdot 15.455893 \cdot 32}{2^2} \\ & \approx 9.689386659\end{aligned}$$
Modular invariants
Modular form 458640.2.a.gi
For more coefficients, see the Downloads section to the right.
Modular degree: | 35389440 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{24}^{*}$ | additive | -1 | 4 | 32 | 20 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 6868 & 8841 \\ 231 & 526 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 5923 & 3318 \\ 1890 & 4747 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 7727 & 10332 \\ 3570 & 713 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 8128 & 4683 \\ 10605 & 8842 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 28665 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
$3$ | additive | $6$ | \( 10192 = 2^{4} \cdot 7^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 458640.gi
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 910.b3, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.