Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-211299123x+1182210064882\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-211299123xz^2+1182210064882z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-211299123x+1182210064882\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(10994, 433602)$ | $6.0195834441958995535202471832$ | $\infty$ |
| $(8393, 0)$ | $0$ | $2$ |
Integral points
\( \left(8393, 0\right) \), \((10994,\pm 433602)\)
Invariants
| Conductor: | $N$ | = | \( 458640 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $8078983508049592320$ | = | $2^{16} \cdot 3^{11} \cdot 5 \cdot 7^{7} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2969894891179808929}{22997520} \) | = | $2^{-4} \cdot 3^{-5} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-2} \cdot 1437409^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2200713219127109047899930782$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0046629224910540971224619666$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9810212262699565$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.302228320365162$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.0195834441958995535202471832$ |
|
| Real period: | $\Omega$ | ≈ | $0.16123764532319971492697132584$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.7646676829493073264750964606 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.764667683 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.161238 \cdot 6.019583 \cdot 32}{2^2} \\ & \approx 7.764667683\end{aligned}$$
Modular invariants
Modular form 458640.2.a.ed
For more coefficients, see the Downloads section to the right.
| Modular degree: | 47185920 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
| $3$ | $2$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 176 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 716 & 839 \\ 337 & 834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 323 & 318 \\ 530 & 107 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 272 & 837 \\ 275 & 838 \end{array}\right),\left(\begin{array}{rr} 311 & 312 \\ 722 & 305 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
| $3$ | additive | $8$ | \( 50960 = 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 91728 = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 458640.ed
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730.z3, its twist by $-84$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.