Properties

Label 454272er1
Conductor $454272$
Discriminant $-7.082\times 10^{16}$
j-invariant \( -\frac{12038741902688}{1791153} \)
CM no
Rank $2$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-1626681x+798109911\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-1626681xz^2+798109911z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-131761188x+582217408656\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 0, -1626681, 798109911])
 
Copy content gp:E = ellinit([0, 1, 0, -1626681, 798109911])
 
Copy content magma:E := EllipticCurve([0, 1, 0, -1626681, 798109911]);
 
Copy content oscar:E = elliptic_curve([0, 1, 0, -1626681, 798109911])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(1707, 54756)$$0.55704807128054121633682969651$$\infty$
$(693, 2028)$$0.68501000208675881079723217202$$\infty$

Integral points

\((-1422,\pm 15423)\), \((-1335,\pm 24336)\), \((-273,\pm 34956)\), \((303,\pm 18252)\), \((693,\pm 2028)\), \((735,\pm 324)\), \((762,\pm 1269)\), \((810,\pm 3549)\), \((1707,\pm 54756)\), \((1983,\pm 73308)\), \((211605,\pm 97337916)\) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 454272 \) = $2^{7} \cdot 3 \cdot 7 \cdot 13^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $-70824373623005184$ = $-1 \cdot 2^{13} \cdot 3^{9} \cdot 7 \cdot 13^{7} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( -\frac{12038741902688}{1791153} \) = $-1 \cdot 2^{5} \cdot 3^{-9} \cdot 7^{-1} \cdot 13^{-1} \cdot 7219^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $2.2468885193746652511213308504$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $0.21350439503728946455925233137$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $0.9347597895555539$
Szpiro ratio: $\sigma_{m}$ ≈ $4.185331512685579$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 2$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 2$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $0.33437735011883143840401706419$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.33447785015155714734702345002$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 144 $  = $ 2^{2}\cdot3^{2}\cdot1\cdot2^{2} $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $1$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L^{(2)}(E,1)/2!$ ≈ $16.105221677825461634580006396 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 16.105221678 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.334478 \cdot 0.334377 \cdot 144}{1^2} \\ & \approx 16.105221678\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 0, -1626681, 798109911]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 0, -1626681, 798109911]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 454272.2.a.er

\( q + q^{3} - q^{5} - q^{7} + q^{9} - 5 q^{11} - q^{15} - 3 q^{17} - 3 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6580224
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $4$ $I_{2}^{*}$ additive 1 7 13 0
$3$ $9$ $I_{9}$ split multiplicative -1 1 9 9
$7$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$13$ $4$ $I_{1}^{*}$ additive 1 2 7 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1457, 2, 1457, 3], [2017, 2, 2017, 3], [1, 0, 2, 1], [1093, 2, 1093, 3], [1, 2, 0, 1], [2183, 2, 2182, 3], [1249, 2, 1249, 3], [1639, 2, 1639, 3], [1, 1, 2183, 0]] GL(2,Integers(2184)).subgroup(gens)
 
Copy content magma:Gens := [[1457, 2, 1457, 3], [2017, 2, 2017, 3], [1, 0, 2, 1], [1093, 2, 1093, 3], [1, 2, 0, 1], [2183, 2, 2182, 3], [1249, 2, 1249, 3], [1639, 2, 1639, 3], [1, 1, 2183, 0]]; sub<GL(2,Integers(2184))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $2$, genus $0$, and generators

$\left(\begin{array}{rr} 1457 & 2 \\ 1457 & 3 \end{array}\right),\left(\begin{array}{rr} 2017 & 2 \\ 2017 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1093 & 2 \\ 1093 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 2 \\ 2182 & 3 \end{array}\right),\left(\begin{array}{rr} 1249 & 2 \\ 1249 & 3 \end{array}\right),\left(\begin{array}{rr} 1639 & 2 \\ 1639 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2183 & 0 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[2184])$ is a degree-$1947721531392$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $4$ \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
$3$ split multiplicative $4$ \( 151424 = 2^{7} \cdot 7 \cdot 13^{2} \)
$7$ nonsplit multiplicative $8$ \( 64896 = 2^{7} \cdot 3 \cdot 13^{2} \)
$13$ additive $98$ \( 2688 = 2^{7} \cdot 3 \cdot 7 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 454272er consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 34944bf1, its twist by $104$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.