Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-78424562x-267323373414\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-78424562xz^2-267323373414z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-101638233027x-12470714736511554\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-5612327/1089, 55500073/35937)$ | $7.2240340016603078951388527784$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 451770 \) | = | $2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $6031036987365292031250$ | = | $2 \cdot 3^{3} \cdot 5^{7} \cdot 11 \cdot 37^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{410454016413013}{46406250} \) | = | $2^{-1} \cdot 3^{-3} \cdot 5^{-7} \cdot 11^{-1} \cdot 74317^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2071207737294319143643432395$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.49893233924626358108827148623$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9439914799904695$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.080017629828608$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2240340016603078951388527784$ |
|
Real period: | $\Omega$ | ≈ | $0.050732875069773237942451003040$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 14 $ = $ 1\cdot1\cdot7\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.1309442030843701069091114188 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.130944203 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.050733 \cdot 7.224034 \cdot 14}{1^2} \\ & \approx 5.130944203\end{aligned}$$
Modular invariants
Modular form 451770.2.a.l
For more coefficients, see the Downloads section to the right.
Modular degree: | 49230720 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$37$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 48840 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 37 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 35521 & 2 \\ 35521 & 3 \end{array}\right),\left(\begin{array}{rr} 32561 & 2 \\ 32561 & 3 \end{array}\right),\left(\begin{array}{rr} 48839 & 2 \\ 48838 & 3 \end{array}\right),\left(\begin{array}{rr} 19537 & 2 \\ 19537 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 48839 & 0 \end{array}\right),\left(\begin{array}{rr} 3961 & 2 \\ 3961 & 3 \end{array}\right),\left(\begin{array}{rr} 24421 & 2 \\ 24421 & 3 \end{array}\right),\left(\begin{array}{rr} 36631 & 2 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[48840])$ is a degree-$425606202261504000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/48840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 6105 = 3 \cdot 5 \cdot 11 \cdot 37 \) |
$3$ | nonsplit multiplicative | $4$ | \( 150590 = 2 \cdot 5 \cdot 11 \cdot 37^{2} \) |
$5$ | split multiplicative | $6$ | \( 90354 = 2 \cdot 3 \cdot 11 \cdot 37^{2} \) |
$7$ | good | $2$ | \( 90354 = 2 \cdot 3 \cdot 11 \cdot 37^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 41070 = 2 \cdot 3 \cdot 5 \cdot 37^{2} \) |
$37$ | additive | $398$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 451770l consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 451770bl1, its twist by $37$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.