Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-3042x+212116\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-3042xz^2+212116z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-48675x+13526750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-76, 38)$ | $0$ | $2$ |
Integral points
\( \left(-76, 38\right) \)
Invariants
Conductor: | $N$ | = | \( 450 \) | = | $2 \cdot 3^{2} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $-17496000000000$ | = | $-1 \cdot 2^{12} \cdot 3^{7} \cdot 5^{9} $ |
|
j-invariant: | $j$ | = | \( -\frac{273359449}{1536000} \) | = | $-1 \cdot 2^{-12} \cdot 3^{-1} \cdot 5^{-3} \cdot 11^{3} \cdot 59^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2250439052075114038700124852$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.12898119534359362912798979987$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0491971880149842$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.227565405421624$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.59819111406633178150087389105$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.1963822281326635630017477821 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.196382228 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.598191 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.196382228\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1152 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $2$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.13 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 12 \\ 12 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 96 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 24 & 7 \\ 49 & 6 \end{array}\right),\left(\begin{array}{rr} 8 & 117 \\ 3 & 86 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 114 & 31 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 14 & 11 \end{array}\right),\left(\begin{array}{rr} 9 & 28 \\ 20 & 29 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) |
$3$ | additive | $8$ | \( 25 = 5^{2} \) |
$5$ | additive | $18$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 450g
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 30a3, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/12\Z\) | 2.2.5.1-1620.1-c1 |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/4\Z\) | 2.0.3.1-7500.1-b1 |
$4$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$6$ | 6.0.22143375.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.2916000000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.1866240000.2 | \(\Z/24\Z\) | not in database |
$8$ | 8.0.5184000000.13 | \(\Z/8\Z\) | not in database |
$12$ | 12.0.490329056390625.2 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.0.8503056000000000000.1 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.0.3482851737600000000.6 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | 16.0.26873856000000000000.3 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$18$ | 18.6.25736391511831125000000000000.4 | \(\Z/36\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | nonsplit | add | add |
$\lambda$-invariant(s) | 2 | - | - |
$\mu$-invariant(s) | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.