Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+195592x+4511312\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+195592xz^2+4511312z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+15842925x+3336275250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-23, 0)$ | $0$ | $2$ |
Integral points
\( \left(-23, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 450800 \) | = | $2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-487932756640000000$ | = | $-1 \cdot 2^{11} \cdot 5^{7} \cdot 7^{8} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{219804478}{129605} \) | = | $2 \cdot 5^{-1} \cdot 7^{-2} \cdot 23^{-2} \cdot 479^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0834498137375560585119982648$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.32960913252043398164018721821$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.845235809446266$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.69965233311535$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.17927398566734329185667570123$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.8683837706774926697068112197 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.868383771 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179274 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 2.868383771\end{aligned}$$
Modular invariants
Modular form 450800.2.a.gb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4718592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
| $5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6440 = 2^{3} \cdot 5 \cdot 7 \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 5636 & 809 \\ 4025 & 2416 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 3219 & 0 \end{array}\right),\left(\begin{array}{rr} 2761 & 4 \\ 5522 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5154 & 1 \\ 3863 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 6437 & 4 \\ 6436 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[6440])$ is a degree-$33092240670720$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $18$ | \( 18032 = 2^{4} \cdot 7^{2} \cdot 23 \) |
| $7$ | additive | $32$ | \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 19600 = 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 450800.gb
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 6440.b2, its twist by $140$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.