Properties

Label 450800.bt
Number of curves $2$
Conductor $450800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 450800.bt have rank \(0\).

Complex multiplication

The elliptic curves in class 450800.bt do not have complex multiplication.

Modular form 450800.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{9} + 4 q^{11} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 450800.bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
450800.bt1 450800bt1 \([0, 1, 0, -54308, -3908612]\) \(109744/23\) \(3712531844000000\) \([2]\) \(2752512\) \(1.7024\) \(\Gamma_0(N)\)-optimal
450800.bt2 450800bt2 \([0, 1, 0, 117192, -23459612]\) \(275684/529\) \(-341552929648000000\) \([2]\) \(5505024\) \(2.0489\)