Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-117605x+15552397\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-117605xz^2+15552397z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1881675x+993471750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(199, -100)$ | $0$ | $2$ |
Integral points
\( \left(199, -100\right) \)
Invariants
Conductor: | $N$ | = | \( 450450 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $4560806250000$ | = | $2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 11 \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{15792469779969}{400400} \) | = | $2^{-4} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{-1} \cdot 13^{-1} \cdot 8363^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5368075589719015803566793898$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.18278245842079654735867710473$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8672823170624246$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5826430396584867$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.71764861133373910832580319663$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $5.7411888906699128666064255730 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.741188891 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.717649 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 5.741188891\end{aligned}$$
Modular invariants
Modular form 450450.2.a.lr
For more coefficients, see the Downloads section to the right.
Modular degree: | 2752512 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120120 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 37756 & 64065 \\ 14895 & 80086 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 43051 & 27030 \\ 5010 & 49051 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 99016 & 72075 \\ 101925 & 64066 \end{array}\right),\left(\begin{array}{rr} 73081 & 57060 \\ 65070 & 109111 \end{array}\right),\left(\begin{array}{rr} 23416 & 72075 \\ 24645 & 64066 \end{array}\right),\left(\begin{array}{rr} 40039 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 24023 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 120113 & 8 \\ 120112 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 120114 & 120115 \end{array}\right)$.
The torsion field $K:=\Q(E[120120])$ is a degree-$514198484287488000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 225225 = 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
$3$ | additive | $6$ | \( 50050 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
$5$ | additive | $18$ | \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 64350 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 40950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 34650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 450450lr
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 10010m1, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.