Properties

Label 450450lr1
Conductor $450450$
Discriminant $4.561\times 10^{12}$
j-invariant \( \frac{15792469779969}{400400} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3-x^2-117605x+15552397\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-x^2z-117605xz^2+15552397z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-1881675x+993471750\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 1, -117605, 15552397])
 
Copy content gp:E = ellinit([1, -1, 1, -117605, 15552397])
 
Copy content magma:E := EllipticCurve([1, -1, 1, -117605, 15552397]);
 
Copy content oscar:E = elliptic_curve([1, -1, 1, -117605, 15552397])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(199, -100)$$0$$2$

Integral points

\( \left(199, -100\right) \) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 450450 \) = $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $4560806250000$ = $2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 11 \cdot 13 $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( \frac{15792469779969}{400400} \) = $2^{-4} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{-1} \cdot 13^{-1} \cdot 8363^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $1.5368075589719015803566793898$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $0.18278245842079654735867710473$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $0.8672823170624246$
Szpiro ratio: $\sigma_{m}$ ≈ $3.5826430396584867$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 0$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 0$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ = $1$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.71764861133373910832580319663$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 32 $  = $ 2^{2}\cdot2\cdot2^{2}\cdot1\cdot1\cdot1 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $2$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L(E,1)$ ≈ $5.7411888906699128666064255730 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  =  $1$    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 5.741188891 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.717649 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 5.741188891\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 1, -117605, 15552397]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 1, -117605, 15552397]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 450450.2.a.lr

\( q + q^{2} + q^{4} + q^{7} + q^{8} + q^{11} + q^{13} + q^{14} + q^{16} + 6 q^{17} - 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2752512
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $4$ $I_{4}$ split multiplicative -1 1 4 4
$3$ $2$ $I_0^{*}$ additive -1 2 6 0
$5$ $4$ $I_{2}^{*}$ additive 1 2 8 2
$7$ $1$ $I_{1}$ split multiplicative -1 1 1 1
$11$ $1$ $I_{1}$ split multiplicative -1 1 1 1
$13$ $1$ $I_{1}$ split multiplicative -1 1 1 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 0, 8, 1], [37756, 64065, 14895, 80086], [1, 8, 0, 1], [43051, 27030, 5010, 49051], [1, 4, 4, 17], [99016, 72075, 101925, 64066], [73081, 57060, 65070, 109111], [23416, 72075, 24645, 64066], [40039, 0, 0, 120119], [24023, 0, 0, 120119], [120113, 8, 120112, 9], [7, 6, 120114, 120115]] GL(2,Integers(120120)).subgroup(gens)
 
Copy content magma:Gens := [[1, 0, 8, 1], [37756, 64065, 14895, 80086], [1, 8, 0, 1], [43051, 27030, 5010, 49051], [1, 4, 4, 17], [99016, 72075, 101925, 64066], [73081, 57060, 65070, 109111], [23416, 72075, 24645, 64066], [40039, 0, 0, 120119], [24023, 0, 0, 120119], [120113, 8, 120112, 9], [7, 6, 120114, 120115]]; sub<GL(2,Integers(120120))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120120 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 37756 & 64065 \\ 14895 & 80086 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 43051 & 27030 \\ 5010 & 49051 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 99016 & 72075 \\ 101925 & 64066 \end{array}\right),\left(\begin{array}{rr} 73081 & 57060 \\ 65070 & 109111 \end{array}\right),\left(\begin{array}{rr} 23416 & 72075 \\ 24645 & 64066 \end{array}\right),\left(\begin{array}{rr} 40039 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 24023 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 120113 & 8 \\ 120112 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 120114 & 120115 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[120120])$ is a degree-$514198484287488000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120120\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ split multiplicative $4$ \( 225225 = 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \)
$3$ additive $6$ \( 50050 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \)
$5$ additive $18$ \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \)
$7$ split multiplicative $8$ \( 64350 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \)
$11$ split multiplicative $12$ \( 40950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \)
$13$ split multiplicative $14$ \( 34650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 450450lr consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 10010m1, its twist by $-15$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.