Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-27744980x+56255830647\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-27744980xz^2+56255830647z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-443919675x+3599929241750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3029, -1515)$ | $0$ | $2$ |
Integral points
\( \left(3029, -1515\right) \)
Invariants
| Conductor: | $N$ | = | \( 450450 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $67602550640625000000$ | = | $2^{6} \cdot 3^{6} \cdot 5^{12} \cdot 7^{3} \cdot 11^{3} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{207362104287019679089}{5934929000000} \) | = | $2^{-6} \cdot 5^{-6} \cdot 7^{-3} \cdot 11^{-3} \cdot 13^{-1} \cdot 29^{3} \cdot 204101^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9061549650489320736400291751$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5521298644978270406420268900$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9490183456348998$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.841702873338461$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.18184512547414805968811106894$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ ( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot1\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $6.5464245170693301487719984819 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 6.546424517 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.181845 \cdot 1.000000 \cdot 144}{2^2} \\ & \approx 6.546424517\end{aligned}$$
Modular invariants
Modular form 450450.2.a.ih
For more coefficients, see the Downloads section to the right.
| Modular degree: | 38817792 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
| $7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120120 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 120109 & 12 \\ 120108 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 34330 & 3 \\ 51453 & 120112 \end{array}\right),\left(\begin{array}{rr} 60061 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 43690 & 3 \\ 98253 & 120112 \end{array}\right),\left(\begin{array}{rr} 9250 & 3 \\ 83133 & 120112 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 120070 & 120111 \end{array}\right),\left(\begin{array}{rr} 115119 & 95098 \\ 25046 & 5021 \end{array}\right),\left(\begin{array}{rr} 24023 & 120108 \\ 24018 & 120047 \end{array}\right),\left(\begin{array}{rr} 40039 & 120108 \\ 100100 & 120119 \end{array}\right)$.
The torsion field $K:=\Q(E[120120])$ is a degree-$257099242143744000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 225225 = 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
| $3$ | additive | $6$ | \( 325 = 5^{2} \cdot 13 \) |
| $5$ | additive | $18$ | \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 64350 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 40950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 34650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 450450ih
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 10010s3, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.