Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-515855x-128236103\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-515855xz^2-128236103z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8253675x-8215364250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-2069/4, 2065/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 450450 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1667092695236718750$ | = | $2 \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 11^{4} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{1332779492447649}{146356560350} \) | = | $2^{-1} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{-4} \cdot 13^{-4} \cdot 36683^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2299547395318468897739115112$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.87592963898074185677590922612$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9346885365628436$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.92336264708267$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.17941215283343477708145079916$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 1\cdot2\cdot2^{2}\cdot1\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $5.7411888906699128666064255730 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.741188891 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179412 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 5.741188891\end{aligned}$$
Modular invariants
Modular form 450450.2.a.lr
For more coefficients, see the Downloads section to the right.
| Modular degree: | 11010048 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120120 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 37756 & 64065 \\ 14895 & 80086 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 53056 & 17025 \\ 37065 & 101176 \end{array}\right),\left(\begin{array}{rr} 36961 & 32040 \\ 43740 & 8041 \end{array}\right),\left(\begin{array}{rr} 76441 & 32040 \\ 81540 & 8041 \end{array}\right),\left(\begin{array}{rr} 40039 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 24023 & 0 \\ 0 & 120119 \end{array}\right),\left(\begin{array}{rr} 15016 & 107115 \\ 61065 & 53086 \end{array}\right),\left(\begin{array}{rr} 120113 & 8 \\ 120112 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 120114 & 120115 \end{array}\right)$.
The torsion field $K:=\Q(E[120120])$ is a degree-$514198484287488000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
| $3$ | additive | $6$ | \( 50050 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
| $5$ | additive | $18$ | \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 64350 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 40950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 34650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 450450.lr
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 10010.q1, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.