Properties

Label 44880.bf
Number of curves $2$
Conductor $44880$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 44880.bf have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 44880.bf do not have complex multiplication.

Modular form 44880.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 2 q^{7} + q^{9} + q^{11} - 4 q^{13} - q^{15} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 44880.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
44880.bf1 44880by2 \([0, -1, 0, -188160, -31334400]\) \(179865548102096641/119964240000\) \(491373527040000\) \([2]\) \(258048\) \(1.7578\)  
44880.bf2 44880by1 \([0, -1, 0, -14080, -278528]\) \(75370704203521/35157196800\) \(144003878092800\) \([2]\) \(129024\) \(1.4112\) \(\Gamma_0(N)\)-optimal