Properties

Label 446160fn4
Conductor $446160$
Discriminant $1.223\times 10^{13}$
j-invariant \( \frac{15897679904620804}{2475} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-8923256x-10262639100\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-8923256xz^2-10262639100z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-722783763x-7479295552638\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 0, -8923256, -10262639100])
 
Copy content gp:E = ellinit([0, 1, 0, -8923256, -10262639100])
 
Copy content magma:E := EllipticCurve([0, 1, 0, -8923256, -10262639100]);
 
Copy content oscar:E = elliptic_curve([0, 1, 0, -8923256, -10262639100])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(4359, 183534)$$6.1484656115311966035808580981$$\infty$
$(6739, 485484)$$8.4942690802037803970594872749$$\infty$
$(-1725, 0)$$0$$2$

Integral points

\( \left(-1725, 0\right) \), \((4359,\pm 183534)\), \((6739,\pm 485484)\) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 446160 \) = $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $12233064729600$ = $2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13^{6} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( \frac{15897679904620804}{2475} \) = $2^{2} \cdot 3^{-2} \cdot 5^{-2} \cdot 11^{-1} \cdot 23^{3} \cdot 71^{3} \cdot 97^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $2.3578628095068925949524274694$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $0.49776548030950313574465698073$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.0052432979893915$
Szpiro ratio: $\sigma_{m}$ ≈ $4.583651077233076$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 2$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 2$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $51.226041464178644546673681295$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.087351167197848596457011267846$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 16 $  = $ 2\cdot2\cdot2\cdot1\cdot2 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $2$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L^{(2)}(E,1)/2!$ ≈ $17.898618051285574813466157209 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 17.898618051 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.087351 \cdot 51.226041 \cdot 16}{2^2} \\ & \approx 17.898618051\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 0, -8923256, -10262639100]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 0, -8923256, -10262639100]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 446160.2.a.fn

\( q + q^{3} - q^{5} + q^{9} - q^{11} - q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9437184
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 
* The Manin constant is correct provided that curve 446160fn1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $2$ $I_{2}^{*}$ additive 1 4 10 0
$3$ $2$ $I_{2}$ split multiplicative -1 1 2 2
$5$ $2$ $I_{2}$ nonsplit multiplicative 1 1 2 2
$11$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$13$ $2$ $I_0^{*}$ additive 1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.24.0.7

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[974, 3289, 8437, 4666], [8799, 0, 0, 11439], [1, 16, 0, 1], [5, 4, 11436, 11437], [15, 2, 11342, 11427], [1, 0, 16, 1], [2653, 3536, 9724, 105], [11425, 16, 11424, 17], [4941, 3536, 7488, 10245], [9608, 8801, 1599, 10570]] GL(2,Integers(11440)).subgroup(gens)
 
Copy content magma:Gens := [[974, 3289, 8437, 4666], [8799, 0, 0, 11439], [1, 16, 0, 1], [5, 4, 11436, 11437], [15, 2, 11342, 11427], [1, 0, 16, 1], [2653, 3536, 9724, 105], [11425, 16, 11424, 17], [4941, 3536, 7488, 10245], [9608, 8801, 1599, 10570]]; sub<GL(2,Integers(11440))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 11440 = 2^{4} \cdot 5 \cdot 11 \cdot 13 \), index $192$, genus $1$, and generators

$\left(\begin{array}{rr} 974 & 3289 \\ 8437 & 4666 \end{array}\right),\left(\begin{array}{rr} 8799 & 0 \\ 0 & 11439 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 11436 & 11437 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 11342 & 11427 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 2653 & 3536 \\ 9724 & 105 \end{array}\right),\left(\begin{array}{rr} 11425 & 16 \\ 11424 & 17 \end{array}\right),\left(\begin{array}{rr} 4941 & 3536 \\ 7488 & 10245 \end{array}\right),\left(\begin{array}{rr} 9608 & 8801 \\ 1599 & 10570 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[11440])$ is a degree-$21254897664000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/11440\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 1859 = 11 \cdot 13^{2} \)
$3$ split multiplicative $4$ \( 148720 = 2^{4} \cdot 5 \cdot 11 \cdot 13^{2} \)
$5$ nonsplit multiplicative $6$ \( 89232 = 2^{4} \cdot 3 \cdot 11 \cdot 13^{2} \)
$11$ nonsplit multiplicative $12$ \( 40560 = 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \)
$13$ additive $86$ \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 446160fn consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 1320h4, its twist by $-52$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.