Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-9597367258600x+11443961975461510000\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-9597367258600xz^2+11443961975461510000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-777386747946627x+8342645947951196950146\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(64108450/9, 471152252350/27)$ | $8.5365606610155080775350860120$ | $\infty$ |
$(1788601, 0)$ | $0$ | $2$ |
Integral points
\( \left(1788601, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 446160 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $3750082159404878924470272000000$ | = | $2^{17} \cdot 3^{10} \cdot 5^{6} \cdot 11^{3} \cdot 13^{12} $ |
|
j-invariant: | $j$ | = | \( \frac{4944928228995290413834018379264689}{189679641808585500000} \) | = | $2^{-5} \cdot 3^{-10} \cdot 5^{-6} \cdot 7^{3} \cdot 11^{-3} \cdot 13^{-6} \cdot 53^{3} \cdot 1607^{3} \cdot 285757^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.8067437773771042998500683188$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.8311219180863906224060924766$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0625410991773636$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.78657456466273$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.5365606610155080775350860120$ |
|
Real period: | $\Omega$ | ≈ | $0.013335979047538911142655857146$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot2\cdot( 2 \cdot 3 )\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.4644829174406911899638111253 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.464482917 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.013336 \cdot 8.536561 \cdot 192}{2^2} \\ & \approx 5.464482917\end{aligned}$$
Modular invariants
Modular form 446160.2.a.ck
For more coefficients, see the Downloads section to the right.
Modular degree: | 9754214400 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 4 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 4 | 17 | 5 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2506 & 3 \\ 2157 & 3424 \end{array}\right),\left(\begin{array}{rr} 2430 & 1847 \\ 715 & 142 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 3382 & 3423 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 791 & 3420 \\ 1314 & 3359 \end{array}\right),\left(\begin{array}{rr} 1145 & 12 \\ 2866 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 3421 & 12 \\ 3420 & 13 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 1689 & 3424 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3432])$ is a degree-$265686220800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1859 = 11 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$5$ | split multiplicative | $6$ | \( 29744 = 2^{4} \cdot 11 \cdot 13^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 40560 = 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 446160ck
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 4290y4, its twist by $-52$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.