Properties

Label 446160ck
Number of curves $4$
Conductor $446160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 446160ck have rank \(1\).

Complex multiplication

The elliptic curves in class 446160ck do not have complex multiplication.

Modular form 446160.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} - q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 446160ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
446160.ck4 446160ck1 \([0, -1, 0, 2386087960, 831381003488112]\) \(75991146714893572533071/15147028085515223040000\) \(-299465979848366687053739458560000\) \([2]\) \(1625702400\) \(4.9109\) \(\Gamma_0(N)\)-optimal*
446160.ck3 446160ck2 \([0, -1, 0, -119445336040, 15431074064812912]\) \(9532597152396244075685450929/313550122650789880627200\) \(6199077085028091711161526701260800\) \([2]\) \(3251404800\) \(5.2574\) \(\Gamma_0(N)\)-optimal*
446160.ck2 446160ck3 \([0, -1, 0, -599807258600, 178829706213510000]\) \(-1207087636168285491836819264689/236446260657750000000000\) \(-4674686725976775146496000000000000\) \([2]\) \(4877107200\) \(5.4602\) \(\Gamma_0(N)\)-optimal*
446160.ck1 446160ck4 \([0, -1, 0, -9597367258600, 11443961975461510000]\) \(4944928228995290413834018379264689/189679641808585500000\) \(3750082159404878924470272000000\) \([2]\) \(9754214400\) \(5.8067\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 4 curves highlighted, and conditionally curve 446160ck1.