Properties

Label 446160ci
Number of curves $4$
Conductor $446160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 446160ci have rank \(1\).

Complex multiplication

The elliptic curves in class 446160ci do not have complex multiplication.

Modular form 446160.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} - q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 446160ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
446160.ci3 446160ci1 \([0, -1, 0, -6985, -291500]\) \(-488095744/200475\) \(-15482472548400\) \([2]\) \(1244160\) \(1.2392\) \(\Gamma_0(N)\)-optimal*
446160.ci2 446160ci2 \([0, -1, 0, -121060, -16170740]\) \(158792223184/16335\) \(20184556803840\) \([2]\) \(2488320\) \(1.5858\) \(\Gamma_0(N)\)-optimal*
446160.ci4 446160ci3 \([0, -1, 0, 53855, 3194632]\) \(223673040896/187171875\) \(-14455086252750000\) \([2]\) \(3732480\) \(1.7885\) \(\Gamma_0(N)\)-optimal*
446160.ci1 446160ci4 \([0, -1, 0, -263020, 28291132]\) \(1628514404944/664335375\) \(820894711569504000\) \([2]\) \(7464960\) \(2.1351\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 4 curves highlighted, and conditionally curve 446160ci1.