Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-31548976x-68188658240\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-31548976xz^2-68188658240z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2555467083x-49717198258182\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(299621/4, 163529301/8)$ | $8.8052267968448517235752829728$ | $\infty$ |
$(-3215, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3215, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 446160 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $434052232632417484800$ | = | $2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 11 \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{175654575624148921}{21954418200} \) | = | $2^{-3} \cdot 3^{-10} \cdot 5^{-2} \cdot 11^{-1} \cdot 13^{-2} \cdot 61^{3} \cdot 9181^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9826158359232870164504262913$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0069939766325733390064504491$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9578791221227754$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8748960438198905$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.8052267968448517235752829728$ |
|
Real period: | $\Omega$ | ≈ | $0.063702502521214644402025910869$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.4873198578070073152594955878 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.487319858 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.063703 \cdot 8.805227 \cdot 32}{2^2} \\ & \approx 4.487319858\end{aligned}$$
Modular invariants
Modular form 446160.2.a.bc
For more coefficients, see the Downloads section to the right.
Modular degree: | 30965760 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1715 & 0 \end{array}\right),\left(\begin{array}{rr} 1874 & 1 \\ 2495 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2641 & 4 \\ 1850 & 9 \end{array}\right),\left(\begin{array}{rr} 1145 & 4 \\ 2290 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3429 & 4 \\ 3428 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 3004 & 433 \\ 2145 & 1288 \end{array}\right)$.
The torsion field $K:=\Q(E[3432])$ is a degree-$2125489766400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1859 = 11 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 148720 = 2^{4} \cdot 5 \cdot 11 \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 29744 = 2^{4} \cdot 11 \cdot 13^{2} \) |
$11$ | split multiplicative | $12$ | \( 40560 = 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 446160bc
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4290p2, its twist by $-52$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.