Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-18910836416x+1001087224519680\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-18910836416xz^2+1001087224519680z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1531777749723x+729787991341597578\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(75776295850863300477335375581/355051589773396791328036, 17299439504618155093058024275258874691633697/211561770266314476645886120654047784)$ | $62.491639653337190847874510496$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 446160 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-109569959268555691760025600000$ | = | $-1 \cdot 2^{37} \cdot 3^{7} \cdot 5^{5} \cdot 11 \cdot 13^{9} $ |
|
| j-invariant: | $j$ | = | \( -\frac{17218915986569071075813}{2522559283200000} \) | = | $-1 \cdot 2^{-25} \cdot 3^{-7} \cdot 5^{-5} \cdot 11^{-1} \cdot 587^{3} \cdot 43991^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.5866339540269809448869736348$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.9697747553708830834296259322$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0291855772958374$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.349946958748859$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $62.491639653337190847874510496$ |
|
| Real period: | $\Omega$ | ≈ | $0.032243509412720711695682813419$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.0597990855149143435745521149 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.059799086 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.032244 \cdot 62.491640 \cdot 4}{1^2} \\ & \approx 8.059799086\end{aligned}$$
Modular invariants
Modular form 446160.2.a.bh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 891072000 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{29}^{*}$ | additive | -1 | 4 | 37 | 25 |
| $3$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
| $5$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 17159 & 0 \end{array}\right),\left(\begin{array}{rr} 10297 & 2 \\ 10297 & 3 \end{array}\right),\left(\begin{array}{rr} 2641 & 2 \\ 2641 & 3 \end{array}\right),\left(\begin{array}{rr} 12871 & 2 \\ 12871 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8581 & 2 \\ 8581 & 3 \end{array}\right),\left(\begin{array}{rr} 11441 & 2 \\ 11441 & 3 \end{array}\right),\left(\begin{array}{rr} 7801 & 2 \\ 7801 & 3 \end{array}\right),\left(\begin{array}{rr} 17159 & 2 \\ 17158 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$6121410527232000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 2145 = 3 \cdot 5 \cdot 11 \cdot 13 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 148720 = 2^{4} \cdot 5 \cdot 11 \cdot 13^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 89232 = 2^{4} \cdot 3 \cdot 11 \cdot 13^{2} \) |
| $7$ | good | $2$ | \( 148720 = 2^{4} \cdot 5 \cdot 11 \cdot 13^{2} \) |
| $11$ | nonsplit multiplicative | $12$ | \( 40560 = 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
| $13$ | additive | $62$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 446160.bh consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 55770.bj1, its twist by $-52$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.