Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-253122973x-1550168067553\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-253122973xz^2-1550168067553z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-20502960840x-1130011012363644\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 44436 \) | = | $2^{2} \cdot 3 \cdot 7 \cdot 23^{2}$ |
|
Discriminant: | $\Delta$ | = | $-46313473081586047126272$ | = | $-1 \cdot 2^{8} \cdot 3^{15} \cdot 7 \cdot 23^{9} $ |
|
j-invariant: | $j$ | = | \( -\frac{47327266415721472000}{1222082060283} \) | = | $-1 \cdot 2^{13} \cdot 3^{-15} \cdot 5^{3} \cdot 7^{-1} \cdot 17^{3} \cdot 23^{-3} \cdot 2111^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4559082394419054772662970883$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4260630111040337589180992581$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0405040795234486$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.509350910239632$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.018925004669696405724068243479$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 90 $ = $ 3\cdot( 3 \cdot 5 )\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7032504202726765151661419131 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.703250420 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.018925 \cdot 1.000000 \cdot 90}{1^2} \\ & \approx 1.703250420\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 6272640 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $15$ | $I_{15}$ | split multiplicative | -1 | 1 | 15 | 15 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$23$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 162 & 811 \\ 325 & 180 \end{array}\right),\left(\begin{array}{rr} 41 & 960 \\ 123 & 947 \end{array}\right),\left(\begin{array}{rr} 961 & 6 \\ 960 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 829 & 6 \\ 555 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[966])$ is a degree-$9694992384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/966\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 11109 = 3 \cdot 7 \cdot 23^{2} \) |
$3$ | split multiplicative | $4$ | \( 14812 = 2^{2} \cdot 7 \cdot 23^{2} \) |
$5$ | good | $2$ | \( 14812 = 2^{2} \cdot 7 \cdot 23^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 6348 = 2^{2} \cdot 3 \cdot 23^{2} \) |
$23$ | additive | $288$ | \( 84 = 2^{2} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 44436i
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1932b1, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-23}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.1932.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1802857392.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.12620001744.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.85850352.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.8756537942445573938282489573658980352.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.98485960502301341675354957500416.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ss | nonsplit | ord | ord | ss | ord | add | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 4,2 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.