Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-4528224x+2957492340\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-4528224xz^2+2957492340z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-366786171x+2157112274346\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1962, 40368)$ | $0.78067554322534791387445657672$ | $\infty$ |
Integral points
\((1962,\pm 40368)\), \((3644,\pm 186702)\), \((12618,\pm 1398192)\)
Invariants
Conductor: | $N$ | = | \( 444048 \) | = | $2^{4} \cdot 3 \cdot 11 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $2159967259507360038912$ | = | $2^{15} \cdot 3^{2} \cdot 11^{4} \cdot 29^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{5011452097}{1054152} \) | = | $2^{-3} \cdot 3^{-2} \cdot 11^{-4} \cdot 29 \cdot 557^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8084291200566005725202702610$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.12958194716099408835247654870$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8998374598851433$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.428830083112935$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.78067554322534791387445657672$ |
|
Real period: | $\Omega$ | ≈ | $0.13847376652140286495275749117$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.377895958549393004545887205 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.377895959 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.138474 \cdot 0.780676 \cdot 96}{1^2} \\ & \approx 10.377895959\end{aligned}$$
Modular invariants
Modular form 444048.2.a.bu
For more coefficients, see the Downloads section to the right.
Modular degree: | 20044800 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$29$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 8.2.0.b.1, level \( 8 = 2^{3} \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[8])$ is a degree-$768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 841 = 29^{2} \) |
$3$ | split multiplicative | $4$ | \( 148016 = 2^{4} \cdot 11 \cdot 29^{2} \) |
$11$ | split multiplicative | $12$ | \( 40368 = 2^{4} \cdot 3 \cdot 29^{2} \) |
$29$ | additive | $310$ | \( 528 = 2^{4} \cdot 3 \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 444048bu consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 55506r1, its twist by $-116$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.