Properties

Label 44352.ds
Number of curves $4$
Conductor $44352$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ds1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 44352.ds have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 44352.ds do not have complex multiplication.

Modular form 44352.2.a.ds

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} - q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 44352.ds

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
44352.ds1 44352x4 \([0, 0, 0, -2974284, 1974338928]\) \(15226621995131793/2324168\) \(444155421523968\) \([2]\) \(589824\) \(2.2162\)  
44352.ds2 44352x3 \([0, 0, 0, -347724, -30306960]\) \(24331017010833/12004097336\) \(2294018725103271936\) \([2]\) \(589824\) \(2.2162\)  
44352.ds3 44352x2 \([0, 0, 0, -186444, 30656880]\) \(3750606459153/45914176\) \(8774335674187776\) \([2, 2]\) \(294912\) \(1.8696\)  
44352.ds4 44352x1 \([0, 0, 0, -2124, 1239408]\) \(-5545233/3469312\) \(-662995847872512\) \([2]\) \(147456\) \(1.5231\) \(\Gamma_0(N)\)-optimal