Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-58843020x-172126398544\)
|
(homogenize, simplify) |
\(y^2z=x^3-58843020xz^2-172126398544z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-58843020x-172126398544\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4076, 0)$ | $0$ | $2$ |
Integral points
\( \left(-4076, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 44352 \) | = | $2^{6} \cdot 3^{2} \cdot 7 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $240538271483715564699648$ | = | $2^{15} \cdot 3^{18} \cdot 7^{6} \cdot 11^{5} $ |
|
j-invariant: | $j$ | = | \( \frac{943259332190261813000}{10069472554261659} \) | = | $2^{3} \cdot 3^{-12} \cdot 5^{3} \cdot 7^{-6} \cdot 11^{-5} \cdot 980717^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3022726487671565476253339205$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8865325287331700651561711502$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0353155241318501$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.101428475454053$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.054545118022444879509186802537$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 240 $ = $ 2\cdot2^{2}\cdot( 2 \cdot 3 )\cdot5 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.2727070813466927705512081522 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.272707081 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.054545 \cdot 1.000000 \cdot 240}{2^2} \\ & \approx 3.272707081\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 5160960 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{5}^{*}$ | additive | 1 | 6 | 15 | 0 |
$3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
$7$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$11$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 616 = 2^{3} \cdot 7 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 353 & 4 \\ 90 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 613 & 4 \\ 612 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 307 & 0 \end{array}\right),\left(\begin{array}{rr} 540 & 81 \\ 385 & 232 \end{array}\right),\left(\begin{array}{rr} 114 & 1 \\ 559 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[616])$ is a degree-$3406233600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/616\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 99 = 3^{2} \cdot 11 \) |
$3$ | additive | $6$ | \( 704 = 2^{6} \cdot 11 \) |
$5$ | good | $2$ | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 44352.dd
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 7392.d1, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.155232.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.186606965293056.181 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.8393816014848.2 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | add | add | ss | split | split |
$\lambda$-invariant(s) | - | - | 4,6 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0,0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.