Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-18375x-943250\)
|
(homogenize, simplify) |
\(y^2z=x^3-18375xz^2-943250z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-18375x-943250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5761/36, 100009/216)$ | $7.1099210812470616572342060738$ | $\infty$ |
$(-70, 0)$ | $0$ | $2$ |
Integral points
\( \left(-70, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 44100 \) | = | $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $12706092000000$ | = | $2^{8} \cdot 3^{3} \cdot 5^{6} \cdot 7^{6} $ |
|
j-invariant: | $j$ | = | \( 54000 \) | = | $2^{4} \cdot 3^{3} \cdot 5^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-3}]\) (potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3088323249503174388930249196$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2055928983347136967536638423$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.027195810121916$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8403792862807906$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.1099210812470616572342060738$ |
|
Real period: | $\Omega$ | ≈ | $0.41051688566227159419347570375$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.8374853191561488719960320184 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.837485319 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.410517 \cdot 7.109921 \cdot 8}{2^2} \\ & \approx 5.837485319\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 82944 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
$3$ | additive | $6$ | \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 44100.by
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 36.a2, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-35}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.529200.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.1500282000.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.286773903360000.99 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.4480842240000.136 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.280052640000.21 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/14\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.66467598634660420391544000000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | add | ss | ord | ss | ord | ss | ss | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | - | - | - | 1,1 | 1 | 1,3 | 1 | 1,3 | 1,1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | - | - | 0,0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.