Learn more

Refine search


Results (1-50 of 93 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
438702.a1 438702.a \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.577970559$ $[1, 1, 0, -8626222, -7166101580]$ \(y^2+xy=x^3+x^2-8626222x-7166101580\) 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.?
438702.a2 438702.a \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.155941119$ $[1, 1, 0, 1361618, -723944780]$ \(y^2+xy=x^3+x^2+1361618x-723944780\) 2.3.0.a.1, 12.6.0.b.1, 46.6.0.a.1, 276.12.0.?
438702.b1 438702.b \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $2.993463839$ $[1, 1, 0, -125304, -17124696]$ \(y^2+xy=x^3+x^2-125304x-17124696\) 3.4.0.a.1, 51.8.0-3.a.1.1, 184.2.0.?, 552.8.0.?, 9384.16.0.?
438702.b2 438702.b \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $2.993463839$ $[1, 1, 0, -2139, -4761]$ \(y^2+xy=x^3+x^2-2139x-4761\) 3.4.0.a.1, 51.8.0-3.a.1.2, 184.2.0.?, 552.8.0.?, 9384.16.0.?
438702.c1 438702.c \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 58806, 99617364]$ \(y^2+xy=x^3+x^2+58806x+99617364\) 9384.2.0.?
438702.d1 438702.d \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.568957381$ $[1, 1, 0, 3029, 37501]$ \(y^2+xy=x^3+x^2+3029x+37501\) 6072.2.0.?
438702.e1 438702.e \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -8749732071, 253616047951149]$ \(y^2+xy=x^3+x^2-8749732071x+253616047951149\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 408.12.0.?, 552.12.0.?, $\ldots$
438702.e2 438702.e \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -2733665311, -51491184208955]$ \(y^2+xy=x^3+x^2-2733665311x-51491184208955\) 2.6.0.a.1, 44.12.0-2.a.1.1, 204.12.0.?, 552.12.0.?, 2244.24.0.?, $\ldots$
438702.e3 438702.e \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2684743391, -53543801206395]$ \(y^2+xy=x^3+x^2-2684743391x-53543801206395\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 204.12.0.?, 552.12.0.?, $\ldots$
438702.e4 438702.e \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 2499650729, -225229950094499]$ \(y^2+xy=x^3+x^2+2499650729x-225229950094499\) 2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 204.12.0.?, 552.12.0.?, $\ldots$
438702.f1 438702.f \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $13.14676996$ $[1, 1, 0, -5161401, -4729230171]$ \(y^2+xy=x^3+x^2-5161401x-4729230171\) 6072.2.0.?
438702.g1 438702.g \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -308068948, -2081357886536]$ \(y^2+xy=x^3+x^2-308068948x-2081357886536\) 184.2.0.?
438702.h1 438702.h \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $3.167556750$ $[1, 1, 0, -182713, -30057089]$ \(y^2+xy=x^3+x^2-182713x-30057089\) 184.2.0.?
438702.i1 438702.i \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $2.829455672$ $[1, 1, 0, -88826323, -250486779209]$ \(y^2+xy=x^3+x^2-88826323x-250486779209\) 184.2.0.?
438702.j1 438702.j \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $46.19638683$ $[1, 1, 0, -17891562, -29135456172]$ \(y^2+xy=x^3+x^2-17891562x-29135456172\) 2024.2.0.?
438702.k1 438702.k \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -457139194, -2911345583708]$ \(y^2+xy=x^3+x^2-457139194x-2911345583708\) 2.3.0.a.1, 748.6.0.?, 1012.6.0.?, 1564.6.0.?, 17204.12.0.?
438702.k2 438702.k \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 65997046, -283004486700]$ \(y^2+xy=x^3+x^2+65997046x-283004486700\) 2.3.0.a.1, 748.6.0.?, 782.6.0.?, 1012.6.0.?, 17204.12.0.?
438702.l1 438702.l \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\Z/2\Z$ $3.640012689$ $[1, 1, 0, -306779, 5515785]$ \(y^2+xy=x^3+x^2-306779x+5515785\) 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.?
438702.l2 438702.l \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\Z/2\Z$ $3.640012689$ $[1, 1, 0, 1222031, 45570607]$ \(y^2+xy=x^3+x^2+1222031x+45570607\) 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.?
438702.m1 438702.m \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -4640334, 3845015748]$ \(y^2+xy=x^3+x^2-4640334x+3845015748\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 68.12.0-4.c.1.2, 552.12.0.?, $\ldots$
438702.m2 438702.m \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1912174, -980784860]$ \(y^2+xy=x^3+x^2-1912174x-980784860\) 2.3.0.a.1, 4.6.0.c.1, 68.12.0-4.c.1.1, 88.12.0.?, 138.6.0.?, $\ldots$
438702.m3 438702.m \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -316894, 48170740]$ \(y^2+xy=x^3+x^2-316894x+48170740\) 2.6.0.a.1, 44.12.0-2.a.1.1, 68.12.0-2.a.1.1, 276.12.0.?, 748.24.0.?, $\ldots$
438702.m4 438702.m \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 53026, 5038068]$ \(y^2+xy=x^3+x^2+53026x+5038068\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 136.12.0.?, 552.12.0.?, $\ldots$
438702.n1 438702.n \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $2.470688981$ $[1, 1, 0, -1796234, 941487828]$ \(y^2+xy=x^3+x^2-1796234x+941487828\) 6.2.0.a.1
438702.o1 438702.o \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $8.101879743$ $[1, 1, 0, -7154634, 5555308500]$ \(y^2+xy=x^3+x^2-7154634x+5555308500\) 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.?
438702.o2 438702.o \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $16.20375948$ $[1, 1, 0, 17306326, 35304728052]$ \(y^2+xy=x^3+x^2+17306326x+35304728052\) 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.?
438702.p1 438702.p \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $6.399605590$ $[1, 1, 0, -18221, -945507]$ \(y^2+xy=x^3+x^2-18221x-945507\) 184.2.0.?
438702.q1 438702.q \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -28761, -549747]$ \(y^2+xy=x^3+x^2-28761x-549747\) 184.2.0.?
438702.r1 438702.r \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -100928776, -390316952768]$ \(y^2+xy=x^3+x^2-100928776x-390316952768\) 3.4.0.a.1, 51.8.0-3.a.1.1, 2024.2.0.?, 6072.8.0.?, 103224.16.0.?
438702.r2 438702.r \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1323481, -465596987]$ \(y^2+xy=x^3+x^2-1323481x-465596987\) 3.4.0.a.1, 51.8.0-3.a.1.2, 2024.2.0.?, 6072.8.0.?, 103224.16.0.?
438702.s1 438702.s \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -10340876, 2537604432]$ \(y^2+xy=x^3+x^2-10340876x+2537604432\) 184.2.0.?
438702.t1 438702.t \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -2988513315, 12488170167262]$ \(y^2+xy+y=x^3-2988513315x+12488170167262\) 184.2.0.?
438702.u1 438702.u \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $1.528867470$ $[1, 0, 1, -100, -118]$ \(y^2+xy+y=x^3-100x-118\) 184.2.0.?
438702.v1 438702.v \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.821829919$ $[1, 0, 1, -41411250, 102564374212]$ \(y^2+xy+y=x^3-41411250x+102564374212\) 2024.2.0.?
438702.w1 438702.w \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -5266020, -4608414110]$ \(y^2+xy+y=x^3-5266020x-4608414110\) 184.2.0.?
438702.x1 438702.x \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -6239372, -5999250886]$ \(y^2+xy+y=x^3-6239372x-5999250886\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 68.12.0-4.c.1.1, 408.24.0.?, $\ldots$
438702.x2 438702.x \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -459372, -58113734]$ \(y^2+xy+y=x^3-459372x-58113734\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 68.12.0-4.c.1.2, 204.24.0.?, $\ldots$
438702.x3 438702.x \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -390012, -93737030]$ \(y^2+xy+y=x^3-390012x-93737030\) 2.6.0.a.1, 12.12.0.a.1, 68.12.0-2.a.1.1, 204.24.0.?, 1012.12.0.?, $\ldots$
438702.x4 438702.x \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -20092, -1996870]$ \(y^2+xy+y=x^3-20092x-1996870\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 136.12.0.?, 204.12.0.?, $\ldots$
438702.y1 438702.y \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.218874193$ $[1, 0, 1, -519111777, 4629163481044]$ \(y^2+xy+y=x^3-519111777x+4629163481044\) 6.2.0.a.1
438702.z1 438702.z \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.192037843$ $[1, 0, 1, -1581797, -592673056]$ \(y^2+xy+y=x^3-1581797x-592673056\) 2.3.0.a.1, 748.6.0.?, 1012.6.0.?, 1564.6.0.?, 17204.12.0.?
438702.z2 438702.z \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.384075687$ $[1, 0, 1, 228363, -57589760]$ \(y^2+xy+y=x^3+228363x-57589760\) 2.3.0.a.1, 748.6.0.?, 782.6.0.?, 1012.6.0.?, 17204.12.0.?
438702.ba1 438702.ba \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -135114, -19114340]$ \(y^2+xy+y=x^3-135114x-19114340\) 2024.2.0.?
438702.bb1 438702.bb \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -6427689033, -198355819290356]$ \(y^2+xy+y=x^3-6427689033x-198355819290356\) 9384.2.0.?
438702.bc1 438702.bc \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.733140011$ $[1, 0, 1, -307358, -51002566]$ \(y^2+xy+y=x^3-307358x-51002566\) 184.2.0.?
438702.bd1 438702.bd \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1065983, -423705670]$ \(y^2+xy+y=x^3-1065983x-423705670\) 184.2.0.?
438702.be1 438702.be \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.129566806$ $[1, 0, 1, -52804208, -147300849160]$ \(y^2+xy+y=x^3-52804208x-147300849160\) 184.2.0.?
438702.bf1 438702.bf \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -8243, 283340]$ \(y^2+xy+y=x^3-8243x+283340\) 2024.2.0.?
438702.bg1 438702.bg \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z$ $18.43356336$ $[1, 0, 1, -49803810, 117676475524]$ \(y^2+xy+y=x^3-49803810x+117676475524\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 68.12.0-4.c.1.2, 88.12.0.?, $\ldots$
438702.bg2 438702.bg \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.216781683$ $[1, 0, 1, -13112370, -16438075964]$ \(y^2+xy+y=x^3-13112370x-16438075964\) 2.6.0.a.1, 12.12.0.a.1, 44.12.0.b.1, 68.12.0-2.a.1.1, 132.24.0.?, $\ldots$
Next   displayed columns for results