Learn more

Refine search


Results (1-50 of 93 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
438702.a1 438702.a 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 1.5779705591.577970559 [1,1,0,8626222,7166101580][1, 1, 0, -8626222, -7166101580] y2+xy=x3+x28626222x7166101580y^2+xy=x^3+x^2-8626222x-7166101580 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.?
438702.a2 438702.a 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 3.1559411193.155941119 [1,1,0,1361618,723944780][1, 1, 0, 1361618, -723944780] y2+xy=x3+x2+1361618x723944780y^2+xy=x^3+x^2+1361618x-723944780 2.3.0.a.1, 12.6.0.b.1, 46.6.0.a.1, 276.12.0.?
438702.b1 438702.b 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 trivial\mathsf{trivial} 2.9934638392.993463839 [1,1,0,125304,17124696][1, 1, 0, -125304, -17124696] y2+xy=x3+x2125304x17124696y^2+xy=x^3+x^2-125304x-17124696 3.4.0.a.1, 51.8.0-3.a.1.1, 184.2.0.?, 552.8.0.?, 9384.16.0.?
438702.b2 438702.b 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 trivial\mathsf{trivial} 2.9934638392.993463839 [1,1,0,2139,4761][1, 1, 0, -2139, -4761] y2+xy=x3+x22139x4761y^2+xy=x^3+x^2-2139x-4761 3.4.0.a.1, 51.8.0-3.a.1.2, 184.2.0.?, 552.8.0.?, 9384.16.0.?
438702.c1 438702.c 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,58806,99617364][1, 1, 0, 58806, 99617364] y2+xy=x3+x2+58806x+99617364y^2+xy=x^3+x^2+58806x+99617364 9384.2.0.?
438702.d1 438702.d 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 1.5689573811.568957381 [1,1,0,3029,37501][1, 1, 0, 3029, 37501] y2+xy=x3+x2+3029x+37501y^2+xy=x^3+x^2+3029x+37501 6072.2.0.?
438702.e1 438702.e 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,8749732071,253616047951149][1, 1, 0, -8749732071, 253616047951149] y2+xy=x3+x28749732071x+253616047951149y^2+xy=x^3+x^2-8749732071x+253616047951149 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 408.12.0.?, 552.12.0.?, \ldots
438702.e2 438702.e 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,2733665311,51491184208955][1, 1, 0, -2733665311, -51491184208955] y2+xy=x3+x22733665311x51491184208955y^2+xy=x^3+x^2-2733665311x-51491184208955 2.6.0.a.1, 44.12.0-2.a.1.1, 204.12.0.?, 552.12.0.?, 2244.24.0.?, \ldots
438702.e3 438702.e 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,2684743391,53543801206395][1, 1, 0, -2684743391, -53543801206395] y2+xy=x3+x22684743391x53543801206395y^2+xy=x^3+x^2-2684743391x-53543801206395 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 204.12.0.?, 552.12.0.?, \ldots
438702.e4 438702.e 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,2499650729,225229950094499][1, 1, 0, 2499650729, -225229950094499] y2+xy=x3+x2+2499650729x225229950094499y^2+xy=x^3+x^2+2499650729x-225229950094499 2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 204.12.0.?, 552.12.0.?, \ldots
438702.f1 438702.f 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 13.1467699613.14676996 [1,1,0,5161401,4729230171][1, 1, 0, -5161401, -4729230171] y2+xy=x3+x25161401x4729230171y^2+xy=x^3+x^2-5161401x-4729230171 6072.2.0.?
438702.g1 438702.g 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,308068948,2081357886536][1, 1, 0, -308068948, -2081357886536] y2+xy=x3+x2308068948x2081357886536y^2+xy=x^3+x^2-308068948x-2081357886536 184.2.0.?
438702.h1 438702.h 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 3.1675567503.167556750 [1,1,0,182713,30057089][1, 1, 0, -182713, -30057089] y2+xy=x3+x2182713x30057089y^2+xy=x^3+x^2-182713x-30057089 184.2.0.?
438702.i1 438702.i 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 2.8294556722.829455672 [1,1,0,88826323,250486779209][1, 1, 0, -88826323, -250486779209] y2+xy=x3+x288826323x250486779209y^2+xy=x^3+x^2-88826323x-250486779209 184.2.0.?
438702.j1 438702.j 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 46.1963868346.19638683 [1,1,0,17891562,29135456172][1, 1, 0, -17891562, -29135456172] y2+xy=x3+x217891562x29135456172y^2+xy=x^3+x^2-17891562x-29135456172 2024.2.0.?
438702.k1 438702.k 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,457139194,2911345583708][1, 1, 0, -457139194, -2911345583708] y2+xy=x3+x2457139194x2911345583708y^2+xy=x^3+x^2-457139194x-2911345583708 2.3.0.a.1, 748.6.0.?, 1012.6.0.?, 1564.6.0.?, 17204.12.0.?
438702.k2 438702.k 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,65997046,283004486700][1, 1, 0, 65997046, -283004486700] y2+xy=x3+x2+65997046x283004486700y^2+xy=x^3+x^2+65997046x-283004486700 2.3.0.a.1, 748.6.0.?, 782.6.0.?, 1012.6.0.?, 17204.12.0.?
438702.l1 438702.l 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 Z/2Z\Z/2\Z 3.6400126893.640012689 [1,1,0,306779,5515785][1, 1, 0, -306779, 5515785] y2+xy=x3+x2306779x+5515785y^2+xy=x^3+x^2-306779x+5515785 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.?
438702.l2 438702.l 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 Z/2Z\Z/2\Z 3.6400126893.640012689 [1,1,0,1222031,45570607][1, 1, 0, 1222031, 45570607] y2+xy=x3+x2+1222031x+45570607y^2+xy=x^3+x^2+1222031x+45570607 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.?
438702.m1 438702.m 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,4640334,3845015748][1, 1, 0, -4640334, 3845015748] y2+xy=x3+x24640334x+3845015748y^2+xy=x^3+x^2-4640334x+3845015748 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 68.12.0-4.c.1.2, 552.12.0.?, \ldots
438702.m2 438702.m 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,1912174,980784860][1, 1, 0, -1912174, -980784860] y2+xy=x3+x21912174x980784860y^2+xy=x^3+x^2-1912174x-980784860 2.3.0.a.1, 4.6.0.c.1, 68.12.0-4.c.1.1, 88.12.0.?, 138.6.0.?, \ldots
438702.m3 438702.m 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,316894,48170740][1, 1, 0, -316894, 48170740] y2+xy=x3+x2316894x+48170740y^2+xy=x^3+x^2-316894x+48170740 2.6.0.a.1, 44.12.0-2.a.1.1, 68.12.0-2.a.1.1, 276.12.0.?, 748.24.0.?, \ldots
438702.m4 438702.m 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,53026,5038068][1, 1, 0, 53026, 5038068] y2+xy=x3+x2+53026x+5038068y^2+xy=x^3+x^2+53026x+5038068 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 136.12.0.?, 552.12.0.?, \ldots
438702.n1 438702.n 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 2.4706889812.470688981 [1,1,0,1796234,941487828][1, 1, 0, -1796234, 941487828] y2+xy=x3+x21796234x+941487828y^2+xy=x^3+x^2-1796234x+941487828 6.2.0.a.1
438702.o1 438702.o 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 8.1018797438.101879743 [1,1,0,7154634,5555308500][1, 1, 0, -7154634, 5555308500] y2+xy=x3+x27154634x+5555308500y^2+xy=x^3+x^2-7154634x+5555308500 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.?
438702.o2 438702.o 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 16.2037594816.20375948 [1,1,0,17306326,35304728052][1, 1, 0, 17306326, 35304728052] y2+xy=x3+x2+17306326x+35304728052y^2+xy=x^3+x^2+17306326x+35304728052 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.?
438702.p1 438702.p 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 trivial\mathsf{trivial} 6.3996055906.399605590 [1,1,0,18221,945507][1, 1, 0, -18221, -945507] y2+xy=x3+x218221x945507y^2+xy=x^3+x^2-18221x-945507 184.2.0.?
438702.q1 438702.q 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,28761,549747][1, 1, 0, -28761, -549747] y2+xy=x3+x228761x549747y^2+xy=x^3+x^2-28761x-549747 184.2.0.?
438702.r1 438702.r 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,100928776,390316952768][1, 1, 0, -100928776, -390316952768] y2+xy=x3+x2100928776x390316952768y^2+xy=x^3+x^2-100928776x-390316952768 3.4.0.a.1, 51.8.0-3.a.1.1, 2024.2.0.?, 6072.8.0.?, 103224.16.0.?
438702.r2 438702.r 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,1323481,465596987][1, 1, 0, -1323481, -465596987] y2+xy=x3+x21323481x465596987y^2+xy=x^3+x^2-1323481x-465596987 3.4.0.a.1, 51.8.0-3.a.1.2, 2024.2.0.?, 6072.8.0.?, 103224.16.0.?
438702.s1 438702.s 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,10340876,2537604432][1, 1, 0, -10340876, 2537604432] y2+xy=x3+x210340876x+2537604432y^2+xy=x^3+x^2-10340876x+2537604432 184.2.0.?
438702.t1 438702.t 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,2988513315,12488170167262][1, 0, 1, -2988513315, 12488170167262] y2+xy+y=x32988513315x+12488170167262y^2+xy+y=x^3-2988513315x+12488170167262 184.2.0.?
438702.u1 438702.u 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 22 trivial\mathsf{trivial} 1.5288674701.528867470 [1,0,1,100,118][1, 0, 1, -100, -118] y2+xy+y=x3100x118y^2+xy+y=x^3-100x-118 184.2.0.?
438702.v1 438702.v 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 1.8218299191.821829919 [1,0,1,41411250,102564374212][1, 0, 1, -41411250, 102564374212] y2+xy+y=x341411250x+102564374212y^2+xy+y=x^3-41411250x+102564374212 2024.2.0.?
438702.w1 438702.w 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,5266020,4608414110][1, 0, 1, -5266020, -4608414110] y2+xy+y=x35266020x4608414110y^2+xy+y=x^3-5266020x-4608414110 184.2.0.?
438702.x1 438702.x 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,6239372,5999250886][1, 0, 1, -6239372, -5999250886] y2+xy+y=x36239372x5999250886y^2+xy+y=x^3-6239372x-5999250886 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 68.12.0-4.c.1.1, 408.24.0.?, \ldots
438702.x2 438702.x 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,459372,58113734][1, 0, 1, -459372, -58113734] y2+xy+y=x3459372x58113734y^2+xy+y=x^3-459372x-58113734 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 68.12.0-4.c.1.2, 204.24.0.?, \ldots
438702.x3 438702.x 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,390012,93737030][1, 0, 1, -390012, -93737030] y2+xy+y=x3390012x93737030y^2+xy+y=x^3-390012x-93737030 2.6.0.a.1, 12.12.0.a.1, 68.12.0-2.a.1.1, 204.24.0.?, 1012.12.0.?, \ldots
438702.x4 438702.x 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,20092,1996870][1, 0, 1, -20092, -1996870] y2+xy+y=x320092x1996870y^2+xy+y=x^3-20092x-1996870 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 136.12.0.?, 204.12.0.?, \ldots
438702.y1 438702.y 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 0.2188741930.218874193 [1,0,1,519111777,4629163481044][1, 0, 1, -519111777, 4629163481044] y2+xy+y=x3519111777x+4629163481044y^2+xy+y=x^3-519111777x+4629163481044 6.2.0.a.1
438702.z1 438702.z 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 1.1920378431.192037843 [1,0,1,1581797,592673056][1, 0, 1, -1581797, -592673056] y2+xy+y=x31581797x592673056y^2+xy+y=x^3-1581797x-592673056 2.3.0.a.1, 748.6.0.?, 1012.6.0.?, 1564.6.0.?, 17204.12.0.?
438702.z2 438702.z 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 2.3840756872.384075687 [1,0,1,228363,57589760][1, 0, 1, 228363, -57589760] y2+xy+y=x3+228363x57589760y^2+xy+y=x^3+228363x-57589760 2.3.0.a.1, 748.6.0.?, 782.6.0.?, 1012.6.0.?, 17204.12.0.?
438702.ba1 438702.ba 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,135114,19114340][1, 0, 1, -135114, -19114340] y2+xy+y=x3135114x19114340y^2+xy+y=x^3-135114x-19114340 2024.2.0.?
438702.bb1 438702.bb 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,6427689033,198355819290356][1, 0, 1, -6427689033, -198355819290356] y2+xy+y=x36427689033x198355819290356y^2+xy+y=x^3-6427689033x-198355819290356 9384.2.0.?
438702.bc1 438702.bc 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 0.7331400110.733140011 [1,0,1,307358,51002566][1, 0, 1, -307358, -51002566] y2+xy+y=x3307358x51002566y^2+xy+y=x^3-307358x-51002566 184.2.0.?
438702.bd1 438702.bd 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,1065983,423705670][1, 0, 1, -1065983, -423705670] y2+xy+y=x31065983x423705670y^2+xy+y=x^3-1065983x-423705670 184.2.0.?
438702.be1 438702.be 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 trivial\mathsf{trivial} 1.1295668061.129566806 [1,0,1,52804208,147300849160][1, 0, 1, -52804208, -147300849160] y2+xy+y=x352804208x147300849160y^2+xy+y=x^3-52804208x-147300849160 184.2.0.?
438702.bf1 438702.bf 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 00 trivial\mathsf{trivial} 11 [1,0,1,8243,283340][1, 0, 1, -8243, 283340] y2+xy+y=x38243x+283340y^2+xy+y=x^3-8243x+283340 2024.2.0.?
438702.bg1 438702.bg 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2Z\Z/2\Z 18.4335633618.43356336 [1,0,1,49803810,117676475524][1, 0, 1, -49803810, 117676475524] y2+xy+y=x349803810x+117676475524y^2+xy+y=x^3-49803810x+117676475524 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 68.12.0-4.c.1.2, 88.12.0.?, \ldots
438702.bg2 438702.bg 231117223 2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 9.2167816839.216781683 [1,0,1,13112370,16438075964][1, 0, 1, -13112370, -16438075964] y2+xy+y=x313112370x16438075964y^2+xy+y=x^3-13112370x-16438075964 2.6.0.a.1, 12.12.0.a.1, 44.12.0.b.1, 68.12.0-2.a.1.1, 132.24.0.?, \ldots
Next   displayed columns for results