Properties

Label 437255.a
Number of curves $4$
Conductor $437255$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 437255.a have rank \(1\).

Complex multiplication

The elliptic curves in class 437255.a do not have complex multiplication.

Modular form 437255.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} - q^{7} + 3 q^{8} - 3 q^{9} - q^{10} - q^{13} + q^{14} - q^{16} + 6 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 437255.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
437255.a1 437255a3 \([1, -1, 1, -381217, 86337456]\) \(6903498885921/374712065\) \(332558337002611265\) \([2]\) \(3870720\) \(2.1181\) \(\Gamma_0(N)\)-optimal*
437255.a2 437255a2 \([1, -1, 1, -68892, -5236234]\) \(40743095121/10144225\) \(9003037028392225\) \([2, 2]\) \(1935360\) \(1.7715\) \(\Gamma_0(N)\)-optimal*
437255.a3 437255a1 \([1, -1, 1, -64087, -6227986]\) \(32798729601/3185\) \(2826699223985\) \([2]\) \(967680\) \(1.4250\) \(\Gamma_0(N)\)-optimal*
437255.a4 437255a4 \([1, -1, 1, 166553, -33395456]\) \(575722725759/874680625\) \(-776282274386880625\) \([2]\) \(3870720\) \(2.1181\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 437255.a1.