Properties

Label 43681c
Number of curves $2$
Conductor $43681$
CM \(\Q(\sqrt{-11}) \)
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 43681c have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 43681c has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-11}) \).

Modular form 43681.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} - 3 q^{5} - 2 q^{9} - 2 q^{12} - 3 q^{15} + 4 q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 43681c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
43681.h2 43681c1 \([0, 1, 1, -2647, -54675]\) \(-32768\) \(-62618067611\) \([]\) \(28800\) \(0.84915\) \(\Gamma_0(N)\)-optimal \(-11\)
43681.h1 43681c2 \([0, 1, 1, -320327, 71490832]\) \(-32768\) \(-110931726475010771\) \([]\) \(316800\) \(2.0481\)   \(-11\)