Properties

Label 436810n
Number of curves $1$
Conductor $436810$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 436810n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 436810n do not have complex multiplication.

Modular form 436810.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 5 q^{7} - q^{8} - 2 q^{9} - q^{10} - q^{12} - 2 q^{13} - 5 q^{14} - q^{15} + q^{16} - 2 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 436810n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
436810.n1 436810n1 \([1, 1, 0, -1501007, 707208451]\) \(-2102251459/50\) \(-8895239766912950\) \([]\) \(9356160\) \(2.1716\) \(\Gamma_0(N)\)-optimal