Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+12950507x+15320236397\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+12950507xz^2+15320236397z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+16783856397x+714529191489102\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(133487/4, 48930803/8)$ | $8.8625964020022170734394383219$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 436810 \) | = | $2 \cdot 5 \cdot 11^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-240331293430291103744000$ | = | $-1 \cdot 2^{21} \cdot 5^{3} \cdot 11^{7} \cdot 19^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{2882081488391}{2883584000} \) | = | $2^{-21} \cdot 5^{-3} \cdot 7^{3} \cdot 11^{-1} \cdot 19^{3} \cdot 107^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1732821028332078800338233157$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.50211497685080237799833781077$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9894443201631888$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.67716588010789$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.8625964020022170734394383219$ |
|
| Real period: | $\Omega$ | ≈ | $0.065163512123038514676392355844$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.3100716323338759750814703721 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.310071632 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.065164 \cdot 8.862596 \cdot 4}{1^2} \\ & \approx 2.310071632\end{aligned}$$
Modular invariants
Modular form 436810.2.a.h
For more coefficients, see the Downloads section to the right.
| Modular degree: | 63685440 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{21}$ | nonsplit multiplicative | 1 | 1 | 21 | 21 |
| $5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $19$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 25080 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 16778 & 18867 \\ 10735 & 3307 \end{array}\right),\left(\begin{array}{rr} 15959 & 9234 \\ 14877 & 2621 \end{array}\right),\left(\begin{array}{rr} 12541 & 15846 \\ 20463 & 22459 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 5017 & 15846 \\ 22971 & 22459 \end{array}\right),\left(\begin{array}{rr} 25075 & 6 \\ 25074 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 6271 & 15846 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2639 & 0 \\ 0 & 25079 \end{array}\right)$.
The torsion field $K:=\Q(E[25080])$ is a degree-$3594646978560000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/25080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 218405 = 5 \cdot 11^{2} \cdot 19^{2} \) |
| $3$ | good | $2$ | \( 43681 = 11^{2} \cdot 19^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 87362 = 2 \cdot 11^{2} \cdot 19^{2} \) |
| $7$ | good | $2$ | \( 218405 = 5 \cdot 11^{2} \cdot 19^{2} \) |
| $11$ | additive | $72$ | \( 3610 = 2 \cdot 5 \cdot 19^{2} \) |
| $19$ | additive | $182$ | \( 1210 = 2 \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 436810h
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 110c2, its twist by $209$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.