Properties

Label 436810.a
Number of curves $1$
Conductor $436810$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 436810.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 436810.a do not have complex multiplication.

Modular form 436810.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - 3 q^{7} - q^{8} + 6 q^{9} - q^{10} - 3 q^{12} + 5 q^{13} + 3 q^{14} - 3 q^{15} + q^{16} - q^{17} - 6 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 436810.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
436810.a1 436810a1 \([1, -1, 0, -89292154, -4965903859790]\) \(-944682558225561/127275585593750\) \(-10607738879062882310190593750\) \([]\) \(696729600\) \(4.0570\) \(\Gamma_0(N)\)-optimal